| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4* | , , , , ⊢  |
| | : , : , :  |
| 1 | reference | 22 | ⊢  |
| 2 | instantiation | 32, 5, 6*, 7* | , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 42, 8 | , , , , ⊢  |
| | : , :  |
| 4 | instantiation | 22, 9, 10 | , , , , ⊢  |
| | : , : , :  |
| 5 | modus ponens | 11, 12 | , , , ⊢  |
| 6 | instantiation | 13, 94 | ⊢  |
| | : , :  |
| 7 | instantiation | 13, 94 | ⊢  |
| | : , :  |
| 8 | modus ponens | 14, 15 | , , , , ⊢  |
| 9 | instantiation | 32, 16 | , , ⊢  |
| | : , : , :  |
| 10 | instantiation | 39, 48, 60, 70, 63, 56, 17, 57, 18* | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 11 | instantiation | 19, 61 | ⊢  |
| | : , : , : , : , : , : , :  |
| 12 | generalization | 46 | , , , ⊢  |
| 13 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 14 | instantiation | 20, 60, 61, 37 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 15 | generalization | 21 | , , , , ⊢  |
| 16 | instantiation | 22, 23, 24 | , , ⊢  |
| | : , : , :  |
| 17 | instantiation | 68, 90, 69, 70, 26, 72, 27 | , ⊢  |
| | : , : , : , :  |
| 18 | instantiation | 25, 60, 95, 69, 70, 26, 56, 72, 27, 57 | , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 20 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 21 | instantiation | 28, 29, 30 | , , , , , ⊢  |
| | : , : , :  |
| 22 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 23 | instantiation | 42, 31 | , , ⊢  |
| | : , :  |
| 24 | instantiation | 32, 33 | , ⊢  |
| | : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_disassociation |
| 26 | instantiation | 76 | ⊢  |
| | : , :  |
| 27 | modus ponens | 34, 35 | ⊢  |
| 28 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 29 | instantiation | 36, 37, 48, 38 | , , , , , ⊢  |
| | : , : , : , :  |
| 30 | instantiation | 39, 48, 60, 70, 63, 56, 65, 57 | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 31 | modus ponens | 40, 41 | , , ⊢  |
| 32 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 33 | instantiation | 42, 43 | , ⊢  |
| | : , :  |
| 34 | instantiation | 58, 61, 70 | ⊢  |
| | : , : , : , : , : , :  |
| 35 | generalization | 73 | ⊢  |
| 36 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 37 | instantiation | 67, 52, 53, 70 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 44, 45, 46 | , , , , ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 40 | instantiation | 47, 61, 63, 48 | ⊢  |
| | : , : , : , : , : , : , :  |
| 41 | modus ponens | 49, 51 | , ⊢  |
| 42 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 43 | modus ponens | 50, 51 | , ⊢  |
| 44 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 45 | instantiation | 68, 52, 53, 70, 54, 56, 72, 73, 57 | , , , , ⊢  |
| | : , : , : , :  |
| 46 | instantiation | 55, 60, 95, 69, 70, 71, 56, 72, 73, 57 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
| 48 | assumption | | ⊢  |
| 49 | instantiation | 58, 61, 63 | ⊢  |
| | : , : , : , : , : , :  |
| 50 | instantiation | 59, 60, 61, 62, 63, 64 | ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 51 | generalization | 65 | , ⊢  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 53 | instantiation | 66 | ⊢  |
| | : , : , : , :  |
| 54 | instantiation | 66 | ⊢  |
| | : , : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_association |
| 56 | assumption | | ⊢  |
| 57 | assumption | | ⊢  |
| 58 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 59 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 62 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 63 | instantiation | 67, 90, 69, 70 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 65 | instantiation | 68, 90, 69, 70, 71, 72, 73 | , , ⊢  |
| | : , : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 67 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 68 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 69 | instantiation | 76 | ⊢  |
| | : , :  |
| 70 | instantiation | 74, 75 | ⊢  |
| | :  |
| 71 | instantiation | 76 | ⊢  |
| | : , :  |
| 72 | assumption | | ⊢  |
| 73 | instantiation | 77, 78 | , ⊢  |
| | :  |
| 74 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 77 | assumption | | ⊢  |
| 78 | instantiation | 79, 80, 81 | ⊢  |
| | :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 80 | instantiation | 96, 82, 94 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 83, 84 | ⊢  |
| | : , :  |
| 82 | instantiation | 85, 92, 93 | ⊢  |
| | : , :  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 84 | instantiation | 86, 87, 88 | ⊢  |
| | : , : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 86 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 87 | instantiation | 89, 90 | ⊢  |
| | :  |
| 88 | instantiation | 91, 92, 93, 94 | ⊢  |
| | : , : , :  |
| 89 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 90 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 92 | instantiation | 96, 97, 95 | ⊢  |
| | : , : , :  |
| 93 | instantiation | 96, 97, 98 | ⊢  |
| | : , : , :  |
| 94 | assumption | | ⊢  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 96 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 97 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |