| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | , , , , ⊢ |
| : , : , : |
1 | reference | 22 | ⊢ |
2 | instantiation | 32, 5, 6*, 7* | , , , ⊢ |
| : , : , : |
3 | instantiation | 42, 8 | , , , , ⊢ |
| : , : |
4 | instantiation | 22, 9, 10 | , , , , ⊢ |
| : , : , : |
5 | modus ponens | 11, 12 | , , , ⊢ |
6 | instantiation | 13, 94 | ⊢ |
| : , : |
7 | instantiation | 13, 94 | ⊢ |
| : , : |
8 | modus ponens | 14, 15 | , , , , ⊢ |
9 | instantiation | 32, 16 | , , ⊢ |
| : , : , : |
10 | instantiation | 39, 48, 60, 70, 63, 56, 17, 57, 18* | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
11 | instantiation | 19, 61 | ⊢ |
| : , : , : , : , : , : , : |
12 | generalization | 46 | , , , ⊢ |
13 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
14 | instantiation | 20, 60, 61, 37 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
15 | generalization | 21 | , , , , ⊢ |
16 | instantiation | 22, 23, 24 | , , ⊢ |
| : , : , : |
17 | instantiation | 68, 90, 69, 70, 26, 72, 27 | , ⊢ |
| : , : , : , : |
18 | instantiation | 25, 60, 95, 69, 70, 26, 56, 72, 27, 57 | , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
19 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
21 | instantiation | 28, 29, 30 | , , , , , ⊢ |
| : , : , : |
22 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
23 | instantiation | 42, 31 | , , ⊢ |
| : , : |
24 | instantiation | 32, 33 | , ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
26 | instantiation | 76 | ⊢ |
| : , : |
27 | modus ponens | 34, 35 | ⊢ |
28 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
29 | instantiation | 36, 37, 48, 38 | , , , , , ⊢ |
| : , : , : , : |
30 | instantiation | 39, 48, 60, 70, 63, 56, 65, 57 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
31 | modus ponens | 40, 41 | , , ⊢ |
32 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
33 | instantiation | 42, 43 | , ⊢ |
| : , : |
34 | instantiation | 58, 61, 70 | ⊢ |
| : , : , : , : , : , : |
35 | generalization | 73 | ⊢ |
36 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
37 | instantiation | 67, 52, 53, 70 | ⊢ |
| : , : , : |
38 | instantiation | 44, 45, 46 | , , , , ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
40 | instantiation | 47, 61, 63, 48 | ⊢ |
| : , : , : , : , : , : , : |
41 | modus ponens | 49, 51 | , ⊢ |
42 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
43 | modus ponens | 50, 51 | , ⊢ |
44 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
45 | instantiation | 68, 52, 53, 70, 54, 56, 72, 73, 57 | , , , , ⊢ |
| : , : , : , : |
46 | instantiation | 55, 60, 95, 69, 70, 71, 56, 72, 73, 57 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
47 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
48 | assumption | | ⊢ |
49 | instantiation | 58, 61, 63 | ⊢ |
| : , : , : , : , : , : |
50 | instantiation | 59, 60, 61, 62, 63, 64 | ⊢ |
| : , : , : , : , : , : , : , : , : , : |
51 | generalization | 65 | , ⊢ |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
53 | instantiation | 66 | ⊢ |
| : , : , : , : |
54 | instantiation | 66 | ⊢ |
| : , : , : , : |
55 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
56 | assumption | | ⊢ |
57 | assumption | | ⊢ |
58 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
59 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
62 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
63 | instantiation | 67, 90, 69, 70 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
65 | instantiation | 68, 90, 69, 70, 71, 72, 73 | , , ⊢ |
| : , : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
67 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
68 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
69 | instantiation | 76 | ⊢ |
| : , : |
70 | instantiation | 74, 75 | ⊢ |
| : |
71 | instantiation | 76 | ⊢ |
| : , : |
72 | assumption | | ⊢ |
73 | instantiation | 77, 78 | , ⊢ |
| : |
74 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
77 | assumption | | ⊢ |
78 | instantiation | 79, 80, 81 | ⊢ |
| : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
80 | instantiation | 96, 82, 94 | ⊢ |
| : , : , : |
81 | instantiation | 83, 84 | ⊢ |
| : , : |
82 | instantiation | 85, 92, 93 | ⊢ |
| : , : |
83 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
84 | instantiation | 86, 87, 88 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
86 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
87 | instantiation | 89, 90 | ⊢ |
| : |
88 | instantiation | 91, 92, 93, 94 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
90 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
92 | instantiation | 96, 97, 95 | ⊢ |
| : , : , : |
93 | instantiation | 96, 97, 98 | ⊢ |
| : , : , : |
94 | assumption | | ⊢ |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
96 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |