logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, fi, i, x, y, z
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals, InSet
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = InSet(i, Interval(two, four))
expr = Equals(Lambda(i, Conditional(TensorProd(x, y, fi, z), sub_expr1)), Lambda(i, Conditional(TensorProd(x, TensorProd(y, fi), z), sub_expr1))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[i \mapsto \left\{x {\otimes} y {\otimes} f\left(i\right) {\otimes} z \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] =  \\ \left[i \mapsto \left\{x {\otimes} \left(y {\otimes} f\left(i\right)\right) {\otimes} z \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Lambdaparameter: 28
body: 5
4Lambdaparameter: 28
body: 6
5Conditionalvalue: 7
condition: 9
6Conditionalvalue: 8
condition: 9
7Operationoperator: 18
operands: 10
8Operationoperator: 18
operands: 11
9Operationoperator: 12
operands: 13
10ExprTuple14, 22, 23, 16
11ExprTuple14, 15, 16
12Literal
13ExprTuple28, 17
14Variable
15Operationoperator: 18
operands: 19
16Variable
17Operationoperator: 20
operands: 21
18Literal
19ExprTuple22, 23
20Literal
21ExprTuple24, 25
22Variable
23Operationoperator: 26
operand: 28
24Literal
25Literal
26Variable
27ExprTuple28
28Variable