| step type | requirements | statement |
0 | generalization | 1 | , , , , ⊢ |
1 | instantiation | 2, 3, 4 | , , , , , ⊢ |
| : , : , : |
2 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
3 | instantiation | 5, 6, 9, 7 | , , , , , ⊢ |
| : , : , : , : |
4 | instantiation | 8, 9, 21, 23, 10, 25, 11, 28 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
5 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
6 | instantiation | 15, 17, 18, 23 | ⊢ |
| : , : , : |
7 | instantiation | 12, 13, 14 | , , , , ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
9 | assumption | | ⊢ |
10 | instantiation | 15, 46, 22, 23 | ⊢ |
| : , : , : |
11 | instantiation | 16, 46, 22, 23, 24, 26, 27 | , , ⊢ |
| : , : , : , : |
12 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
13 | instantiation | 16, 17, 18, 23, 19, 25, 26, 27, 28 | , , , , ⊢ |
| : , : , : , : |
14 | instantiation | 20, 21, 51, 22, 23, 24, 25, 26, 27, 28 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
15 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
16 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
17 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
18 | instantiation | 29 | ⊢ |
| : , : , : , : |
19 | instantiation | 29 | ⊢ |
| : , : , : , : |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
22 | instantiation | 32 | ⊢ |
| : , : |
23 | instantiation | 30, 31 | ⊢ |
| : |
24 | instantiation | 32 | ⊢ |
| : , : |
25 | assumption | | ⊢ |
26 | assumption | | ⊢ |
27 | instantiation | 33, 34 | , ⊢ |
| : |
28 | assumption | | ⊢ |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
30 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
33 | assumption | | ⊢ |
34 | instantiation | 35, 36, 37 | ⊢ |
| : |
35 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
36 | instantiation | 52, 38, 50 | ⊢ |
| : , : , : |
37 | instantiation | 39, 40 | ⊢ |
| : , : |
38 | instantiation | 41, 48, 49 | ⊢ |
| : , : |
39 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
40 | instantiation | 42, 43, 44 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
42 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
43 | instantiation | 45, 46 | ⊢ |
| : |
44 | instantiation | 47, 48, 49, 50 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
47 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
48 | instantiation | 52, 53, 51 | ⊢ |
| : , : , : |
49 | instantiation | 52, 53, 54 | ⊢ |
| : , : , : |
50 | assumption | | ⊢ |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
52 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
53 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |