| | step type | requirements | statement |
| 0 | generalization | 1 | , , , , ⊢  |
| 1 | instantiation | 2, 3, 4 | , , , , , ⊢  |
| | : , : , :  |
| 2 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 3 | instantiation | 5, 6, 9, 7 | , , , , , ⊢  |
| | : , : , : , :  |
| 4 | instantiation | 8, 9, 21, 23, 10, 25, 11, 28 | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 6 | instantiation | 15, 17, 18, 23 | ⊢  |
| | : , : , :  |
| 7 | instantiation | 12, 13, 14 | , , , , ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 9 | assumption | | ⊢  |
| 10 | instantiation | 15, 46, 22, 23 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 16, 46, 22, 23, 24, 26, 27 | , , ⊢  |
| | : , : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 13 | instantiation | 16, 17, 18, 23, 19, 25, 26, 27, 28 | , , , , ⊢  |
| | : , : , : , :  |
| 14 | instantiation | 20, 21, 51, 22, 23, 24, 25, 26, 27, 28 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 15 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 16 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 17 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 18 | instantiation | 29 | ⊢  |
| | : , : , : , :  |
| 19 | instantiation | 29 | ⊢  |
| | : , : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_association |
| 21 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 22 | instantiation | 32 | ⊢  |
| | : , :  |
| 23 | instantiation | 30, 31 | ⊢  |
| | :  |
| 24 | instantiation | 32 | ⊢  |
| | : , :  |
| 25 | assumption | | ⊢  |
| 26 | assumption | | ⊢  |
| 27 | instantiation | 33, 34 | , ⊢  |
| | :  |
| 28 | assumption | | ⊢  |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 30 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 31 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 33 | assumption | | ⊢  |
| 34 | instantiation | 35, 36, 37 | ⊢  |
| | :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 36 | instantiation | 52, 38, 50 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 39, 40 | ⊢  |
| | : , :  |
| 38 | instantiation | 41, 48, 49 | ⊢  |
| | : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 40 | instantiation | 42, 43, 44 | ⊢  |
| | : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 42 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 43 | instantiation | 45, 46 | ⊢  |
| | :  |
| 44 | instantiation | 47, 48, 49, 50 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 47 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 48 | instantiation | 52, 53, 51 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 52, 53, 54 | ⊢  |
| | : , : , :  |
| 50 | assumption | | ⊢  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 52 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 53 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 54 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |