| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
2 | instantiation | 4, 5, 8, 6 | , , , , , ⊢ |
| : , : , : , : |
3 | instantiation | 7, 8, 20, 22, 9, 24, 10, 27 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
5 | instantiation | 14, 16, 17, 22 | ⊢ |
| : , : , : |
6 | instantiation | 11, 12, 13 | , , , , ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
8 | assumption | | ⊢ |
9 | instantiation | 14, 45, 21, 22 | ⊢ |
| : , : , : |
10 | instantiation | 15, 45, 21, 22, 23, 25, 26 | , , ⊢ |
| : , : , : , : |
11 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
12 | instantiation | 15, 16, 17, 22, 18, 24, 25, 26, 27 | , , , , ⊢ |
| : , : , : , : |
13 | instantiation | 19, 20, 50, 21, 22, 23, 24, 25, 26, 27 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
15 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
16 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
17 | instantiation | 28 | ⊢ |
| : , : , : , : |
18 | instantiation | 28 | ⊢ |
| : , : , : , : |
19 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
21 | instantiation | 31 | ⊢ |
| : , : |
22 | instantiation | 29, 30 | ⊢ |
| : |
23 | instantiation | 31 | ⊢ |
| : , : |
24 | assumption | | ⊢ |
25 | assumption | | ⊢ |
26 | instantiation | 32, 33 | , ⊢ |
| : |
27 | assumption | | ⊢ |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
29 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
32 | assumption | | ⊢ |
33 | instantiation | 34, 35, 36 | ⊢ |
| : |
34 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
35 | instantiation | 51, 37, 49 | ⊢ |
| : , : , : |
36 | instantiation | 38, 39 | ⊢ |
| : , : |
37 | instantiation | 40, 47, 48 | ⊢ |
| : , : |
38 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
39 | instantiation | 41, 42, 43 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
41 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
42 | instantiation | 44, 45 | ⊢ |
| : |
43 | instantiation | 46, 47, 48, 49 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
46 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
47 | instantiation | 51, 52, 50 | ⊢ |
| : , : , : |
48 | instantiation | 51, 52, 53 | ⊢ |
| : , : , : |
49 | assumption | | ⊢ |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
51 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |