| | step type | requirements | statement |
| 0 | modus ponens | 1, 2 | , , , , ⊢  |
| 1 | instantiation | 3, 25, 4, 10 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 2 | generalization | 5 | , , , , ⊢  |
| 3 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 5 | instantiation | 6, 7, 8 | , , , , , ⊢  |
| | : , : , :  |
| 6 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 7 | instantiation | 9, 10, 13, 11 | , , , , , ⊢  |
| | : , : , : , :  |
| 8 | instantiation | 12, 13, 25, 27, 14, 29, 15, 32 | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 9 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 10 | instantiation | 19, 21, 22, 27 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 16, 17, 18 | , , , , ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 13 | assumption | | ⊢  |
| 14 | instantiation | 19, 50, 26, 27 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 20, 50, 26, 27, 28, 30, 31 | , , ⊢  |
| | : , : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 17 | instantiation | 20, 21, 22, 27, 23, 29, 30, 31, 32 | , , , , ⊢  |
| | : , : , : , :  |
| 18 | instantiation | 24, 25, 55, 26, 27, 28, 29, 30, 31, 32 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 20 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 21 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 22 | instantiation | 33 | ⊢  |
| | : , : , : , :  |
| 23 | instantiation | 33 | ⊢  |
| | : , : , : , :  |
| 24 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_association |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 26 | instantiation | 36 | ⊢  |
| | : , :  |
| 27 | instantiation | 34, 35 | ⊢  |
| | :  |
| 28 | instantiation | 36 | ⊢  |
| | : , :  |
| 29 | assumption | | ⊢  |
| 30 | assumption | | ⊢  |
| 31 | instantiation | 37, 38 | , ⊢  |
| | :  |
| 32 | assumption | | ⊢  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 34 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 37 | assumption | | ⊢  |
| 38 | instantiation | 39, 40, 41 | ⊢  |
| | :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 40 | instantiation | 56, 42, 54 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 43, 44 | ⊢  |
| | : , :  |
| 42 | instantiation | 45, 52, 53 | ⊢  |
| | : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 44 | instantiation | 46, 47, 48 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 46 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 47 | instantiation | 49, 50 | ⊢  |
| | :  |
| 48 | instantiation | 51, 52, 53, 54 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 51 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 52 | instantiation | 56, 57, 55 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 56, 57, 58 | ⊢  |
| | : , : , :  |
| 54 | assumption | | ⊢  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 56 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 57 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |