| step type | requirements | statement |
0 | modus ponens | 1, 2 | , , , , ⊢ |
1 | instantiation | 3, 25, 4, 10 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
2 | generalization | 5 | , , , , ⊢ |
3 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
5 | instantiation | 6, 7, 8 | , , , , , ⊢ |
| : , : , : |
6 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
7 | instantiation | 9, 10, 13, 11 | , , , , , ⊢ |
| : , : , : , : |
8 | instantiation | 12, 13, 25, 27, 14, 29, 15, 32 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
9 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
10 | instantiation | 19, 21, 22, 27 | ⊢ |
| : , : , : |
11 | instantiation | 16, 17, 18 | , , , , ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
13 | assumption | | ⊢ |
14 | instantiation | 19, 50, 26, 27 | ⊢ |
| : , : , : |
15 | instantiation | 20, 50, 26, 27, 28, 30, 31 | , , ⊢ |
| : , : , : , : |
16 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
17 | instantiation | 20, 21, 22, 27, 23, 29, 30, 31, 32 | , , , , ⊢ |
| : , : , : , : |
18 | instantiation | 24, 25, 55, 26, 27, 28, 29, 30, 31, 32 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
19 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
22 | instantiation | 33 | ⊢ |
| : , : , : , : |
23 | instantiation | 33 | ⊢ |
| : , : , : , : |
24 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
26 | instantiation | 36 | ⊢ |
| : , : |
27 | instantiation | 34, 35 | ⊢ |
| : |
28 | instantiation | 36 | ⊢ |
| : , : |
29 | assumption | | ⊢ |
30 | assumption | | ⊢ |
31 | instantiation | 37, 38 | , ⊢ |
| : |
32 | assumption | | ⊢ |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
34 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
37 | assumption | | ⊢ |
38 | instantiation | 39, 40, 41 | ⊢ |
| : |
39 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
40 | instantiation | 56, 42, 54 | ⊢ |
| : , : , : |
41 | instantiation | 43, 44 | ⊢ |
| : , : |
42 | instantiation | 45, 52, 53 | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
44 | instantiation | 46, 47, 48 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
46 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
47 | instantiation | 49, 50 | ⊢ |
| : |
48 | instantiation | 51, 52, 53, 54 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
52 | instantiation | 56, 57, 55 | ⊢ |
| : , : , : |
53 | instantiation | 56, 57, 58 | ⊢ |
| : , : , : |
54 | assumption | | ⊢ |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
56 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |