logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import fi, gamma, i, x, y, z
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = VecSum(index_or_indices = [i], summand = fi, domain = Interval(two, four))
expr = Equals(TensorProd(x, ScalarMult(gamma, TensorProd(y, sub_expr1)), z), ScalarMult(gamma, TensorProd(x, y, sub_expr1, z))).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(x {\otimes} \left(\gamma \cdot \left(y {\otimes} \left(\sum_{i=2}^{4} f\left(i\right)\right)\right)\right) {\otimes} z\right) \\  = \left(\gamma \cdot \left(x {\otimes} y {\otimes} \left(\sum_{i=2}^{4} f\left(i\right)\right) {\otimes} z\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 16
operands: 5
4Operationoperator: 9
operands: 6
5ExprTuple14, 7, 15
6ExprTuple12, 8
7Operationoperator: 9
operands: 10
8Operationoperator: 16
operands: 11
9Literal
10ExprTuple12, 13
11ExprTuple14, 18, 19, 15
12Variable
13Operationoperator: 16
operands: 17
14Variable
15Variable
16Literal
17ExprTuple18, 19
18Variable
19Operationoperator: 20
operand: 22
20Literal
21ExprTuple22
22Lambdaparameter: 30
body: 23
23Conditionalvalue: 24
condition: 25
24Operationoperator: 26
operand: 30
25Operationoperator: 28
operands: 29
26Variable
27ExprTuple30
28Literal
29ExprTuple30, 31
30Variable
31Operationoperator: 32
operands: 33
32Literal
33ExprTuple34, 35
34Literal
35Literal