| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , ⊢ |
| : , : , : |
1 | reference | 8 | ⊢ |
2 | instantiation | 17, 4 | , , ⊢ |
| : , : , : |
3 | instantiation | 5, 26, 32, 41, 35, 13, 6, 15, 7* | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
4 | instantiation | 8, 9, 10 | , , ⊢ |
| : , : , : |
5 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
6 | instantiation | 39, 61, 40, 41, 12, 43, 14 | , ⊢ |
| : , : , : , : |
7 | instantiation | 11, 32, 66, 40, 41, 12, 13, 43, 14, 15 | , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
8 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
9 | instantiation | 23, 16 | , , ⊢ |
| : , : |
10 | instantiation | 17, 18 | , ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
12 | instantiation | 47 | ⊢ |
| : , : |
13 | assumption | | ⊢ |
14 | modus ponens | 19, 20 | ⊢ |
15 | assumption | | ⊢ |
16 | modus ponens | 21, 22 | , , ⊢ |
17 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
18 | instantiation | 23, 24 | , ⊢ |
| : , : |
19 | instantiation | 30, 33, 41 | ⊢ |
| : , : , : , : , : , : |
20 | generalization | 44 | ⊢ |
21 | instantiation | 25, 33, 35, 26 | ⊢ |
| : , : , : , : , : , : , : |
22 | modus ponens | 27, 29 | , ⊢ |
23 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
24 | modus ponens | 28, 29 | , ⊢ |
25 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
26 | assumption | | ⊢ |
27 | instantiation | 30, 33, 35 | ⊢ |
| : , : , : , : , : , : |
28 | instantiation | 31, 32, 33, 34, 35, 36 | ⊢ |
| : , : , : , : , : , : , : , : , : , : |
29 | generalization | 37 | , ⊢ |
30 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
31 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
34 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
35 | instantiation | 38, 61, 40, 41 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
37 | instantiation | 39, 61, 40, 41, 42, 43, 44 | , , ⊢ |
| : , : , : , : |
38 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
39 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
40 | instantiation | 47 | ⊢ |
| : , : |
41 | instantiation | 45, 46 | ⊢ |
| : |
42 | instantiation | 47 | ⊢ |
| : , : |
43 | assumption | | ⊢ |
44 | instantiation | 48, 49 | , ⊢ |
| : |
45 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
48 | assumption | | ⊢ |
49 | instantiation | 50, 51, 52 | ⊢ |
| : |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
51 | instantiation | 67, 53, 65 | ⊢ |
| : , : , : |
52 | instantiation | 54, 55 | ⊢ |
| : , : |
53 | instantiation | 56, 63, 64 | ⊢ |
| : , : |
54 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
55 | instantiation | 57, 58, 59 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
57 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
58 | instantiation | 60, 61 | ⊢ |
| : |
59 | instantiation | 62, 63, 64, 65 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
62 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
63 | instantiation | 67, 68, 66 | ⊢ |
| : , : , : |
64 | instantiation | 67, 68, 69 | ⊢ |
| : , : , : |
65 | assumption | | ⊢ |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
67 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |