| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , , ⊢  |
| | : , : , :  |
| 1 | reference | 8 | ⊢  |
| 2 | instantiation | 17, 4 | , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 5, 26, 32, 41, 35, 13, 6, 15, 7* | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 4 | instantiation | 8, 9, 10 | , , ⊢  |
| | : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 6 | instantiation | 39, 61, 40, 41, 12, 43, 14 | , ⊢  |
| | : , : , : , :  |
| 7 | instantiation | 11, 32, 66, 40, 41, 12, 13, 43, 14, 15 | , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 8 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 9 | instantiation | 23, 16 | , , ⊢  |
| | : , :  |
| 10 | instantiation | 17, 18 | , ⊢  |
| | : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_disassociation |
| 12 | instantiation | 47 | ⊢  |
| | : , :  |
| 13 | assumption | | ⊢  |
| 14 | modus ponens | 19, 20 | ⊢  |
| 15 | assumption | | ⊢  |
| 16 | modus ponens | 21, 22 | , , ⊢  |
| 17 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 18 | instantiation | 23, 24 | , ⊢  |
| | : , :  |
| 19 | instantiation | 30, 33, 41 | ⊢  |
| | : , : , : , : , : , :  |
| 20 | generalization | 44 | ⊢  |
| 21 | instantiation | 25, 33, 35, 26 | ⊢  |
| | : , : , : , : , : , : , :  |
| 22 | modus ponens | 27, 29 | , ⊢  |
| 23 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 24 | modus ponens | 28, 29 | , ⊢  |
| 25 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
| 26 | assumption | | ⊢  |
| 27 | instantiation | 30, 33, 35 | ⊢  |
| | : , : , : , : , : , :  |
| 28 | instantiation | 31, 32, 33, 34, 35, 36 | ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 29 | generalization | 37 | , ⊢  |
| 30 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 31 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 34 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 35 | instantiation | 38, 61, 40, 41 | ⊢  |
| | : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 37 | instantiation | 39, 61, 40, 41, 42, 43, 44 | , , ⊢  |
| | : , : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 39 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 40 | instantiation | 47 | ⊢  |
| | : , :  |
| 41 | instantiation | 45, 46 | ⊢  |
| | :  |
| 42 | instantiation | 47 | ⊢  |
| | : , :  |
| 43 | assumption | | ⊢  |
| 44 | instantiation | 48, 49 | , ⊢  |
| | :  |
| 45 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 48 | assumption | | ⊢  |
| 49 | instantiation | 50, 51, 52 | ⊢  |
| | :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 51 | instantiation | 67, 53, 65 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 54, 55 | ⊢  |
| | : , :  |
| 53 | instantiation | 56, 63, 64 | ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 55 | instantiation | 57, 58, 59 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 57 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 58 | instantiation | 60, 61 | ⊢  |
| | :  |
| 59 | instantiation | 62, 63, 64, 65 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 63 | instantiation | 67, 68, 66 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 67, 68, 69 | ⊢  |
| | : , : , :  |
| 65 | assumption | | ⊢  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 67 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 69 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |