logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import fi, gamma, i, x, y, z
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
expr = Equals(TensorProd(x, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(gamma, TensorProd(y, fi)), domain = sub_expr2), z), ScalarMult(gamma, TensorProd(x, y, VecSum(index_or_indices = sub_expr1, summand = fi, domain = sub_expr2), z)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x {\otimes} \left(\sum_{i=2}^{4} \left(\gamma \cdot \left(y {\otimes} f\left(i\right)\right)\right)\right) {\otimes} z\right) = \left(\gamma \cdot \left(x {\otimes} y {\otimes} \left(\sum_{i=2}^{4} f\left(i\right)\right) {\otimes} z\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 26
operands: 5
4Operationoperator: 20
operands: 6
5ExprTuple12, 7, 14
6ExprTuple23, 8
7Operationoperator: 16
operand: 11
8Operationoperator: 26
operands: 10
9ExprTuple11
10ExprTuple12, 30, 13, 14
11Lambdaparameter: 37
body: 15
12Variable
13Operationoperator: 16
operand: 19
14Variable
15Conditionalvalue: 18
condition: 25
16Literal
17ExprTuple19
18Operationoperator: 20
operands: 21
19Lambdaparameter: 37
body: 22
20Literal
21ExprTuple23, 24
22Conditionalvalue: 31
condition: 25
23Variable
24Operationoperator: 26
operands: 27
25Operationoperator: 28
operands: 29
26Literal
27ExprTuple30, 31
28Literal
29ExprTuple37, 32
30Variable
31Operationoperator: 33
operand: 37
32Operationoperator: 35
operands: 36
33Variable
34ExprTuple37
35Literal
36ExprTuple38, 39
37Variable
38Literal
39Literal