logo

Expression of type Implies

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import fi, i, y
from proveit.linear_algebra import TensorProd, VecSum
from proveit.logic import CartExp, Forall, Implies, InSet
from proveit.numbers import Interval, Real, four, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = CartExp(Real, three)
sub_expr3 = Interval(two, four)
sub_expr4 = TensorProd(y, fi)
sub_expr5 = TensorProd(sub_expr2, sub_expr2)
expr = Implies(Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(sub_expr4, sub_expr5), domain = sub_expr3), InSet(VecSum(index_or_indices = sub_expr1, summand = sub_expr4, domain = sub_expr3), sub_expr5)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[\forall_{i \in \{2~\ldotp \ldotp~4\}}~\left(\left(y {\otimes} f\left(i\right)\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right)\right)\right] \Rightarrow  \\ \left(\left(\sum_{i=2}^{4} \left(y {\otimes} f\left(i\right)\right)\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 8
4Operationoperator: 23
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 17
8Lambdaparameter: 37
body: 10
9Operationoperator: 11
operand: 14
10Conditionalvalue: 13
condition: 19
11Literal
12ExprTuple14
13Operationoperator: 23
operands: 15
14Lambdaparameter: 37
body: 16
15ExprTuple18, 17
16Conditionalvalue: 18
condition: 19
17Operationoperator: 21
operands: 20
18Operationoperator: 21
operands: 22
19Operationoperator: 23
operands: 24
20ExprTuple25, 25
21Literal
22ExprTuple26, 27
23Literal
24ExprTuple37, 28
25Operationoperator: 29
operands: 30
26Variable
27Operationoperator: 31
operand: 37
28Operationoperator: 33
operands: 34
29Literal
30ExprTuple35, 36
31Variable
32ExprTuple37
33Literal
34ExprTuple38, 39
35Literal
36Literal
37Variable
38Literal
39Literal