| step type | requirements | statement |
0 | instantiation | 1, 2 | , , , , ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
2 | modus ponens | 3, 4 | , , , , ⊢ |
3 | instantiation | 5, 27, 6, 12 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
4 | generalization | 7 | , , , , ⊢ |
5 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
6 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
7 | instantiation | 8, 9, 10 | , , , , , ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
9 | instantiation | 11, 12, 15, 13 | , , , , , ⊢ |
| : , : , : , : |
10 | instantiation | 14, 15, 27, 29, 16, 31, 17, 34 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
11 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
12 | instantiation | 21, 23, 24, 29 | ⊢ |
| : , : , : |
13 | instantiation | 18, 19, 20 | , , , , ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
15 | assumption | | ⊢ |
16 | instantiation | 21, 52, 28, 29 | ⊢ |
| : , : , : |
17 | instantiation | 22, 52, 28, 29, 30, 32, 33 | , , ⊢ |
| : , : , : , : |
18 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
19 | instantiation | 22, 23, 24, 29, 25, 31, 32, 33, 34 | , , , , ⊢ |
| : , : , : , : |
20 | instantiation | 26, 27, 57, 28, 29, 30, 31, 32, 33, 34 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
22 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
24 | instantiation | 35 | ⊢ |
| : , : , : , : |
25 | instantiation | 35 | ⊢ |
| : , : , : , : |
26 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_association |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
28 | instantiation | 38 | ⊢ |
| : , : |
29 | instantiation | 36, 37 | ⊢ |
| : |
30 | instantiation | 38 | ⊢ |
| : , : |
31 | assumption | | ⊢ |
32 | assumption | | ⊢ |
33 | instantiation | 39, 40 | , ⊢ |
| : |
34 | assumption | | ⊢ |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
36 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
39 | assumption | | ⊢ |
40 | instantiation | 41, 42, 43 | ⊢ |
| : |
41 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
42 | instantiation | 58, 44, 56 | ⊢ |
| : , : , : |
43 | instantiation | 45, 46 | ⊢ |
| : , : |
44 | instantiation | 47, 54, 55 | ⊢ |
| : , : |
45 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
46 | instantiation | 48, 49, 50 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
48 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
49 | instantiation | 51, 52 | ⊢ |
| : |
50 | instantiation | 53, 54, 55, 56 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
53 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
54 | instantiation | 58, 59, 57 | ⊢ |
| : , : , : |
55 | instantiation | 58, 59, 60 | ⊢ |
| : , : , : |
56 | assumption | | ⊢ |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
58 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
59 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |