| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 272 | ⊢ |
2 | instantiation | 285, 4 | ⊢ |
| : , : , : |
3 | instantiation | 226, 5 | ⊢ |
| : , : |
4 | instantiation | 6, 206, 7 | ⊢ |
| : , : , : |
5 | instantiation | 8, 9 | ⊢ |
| : , : |
6 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_eq_via_elem_eq |
7 | modus ponens | 10, 11 | ⊢ |
8 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.prob_eq_via_equiv |
9 | modus ponens | 12, 13 | ⊢ |
10 | instantiation | 14, 111, 15, 16, 17, 18, 19, 20, 21, 22 | ⊢ |
| : , : , : , : |
11 | instantiation | 23, 111, 24, 25, 26, 27, 28 | ⊢ |
| : , : , : |
12 | instantiation | 29, 308, 313, 254, 30, 255 | ⊢ |
| : , : , : , : , : , : , : , : |
13 | instantiation | 31, 87, 233, 310, 296, 32, 33, 34, 35, 36, 90, 37, 38, 39, 104, 254, 113, 117, 40, 101* | ⊢ |
| : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.qcircuit_eq |
15 | instantiation | 207, 41, 42 | ⊢ |
| : , : |
16 | instantiation | 272, 43, 44 | ⊢ |
| : , : , : |
17 | instantiation | 202, 45, 47, 48 | ⊢ |
| : , : , : , : |
18 | instantiation | 202, 46, 47, 48 | ⊢ |
| : , : , : , : |
19 | instantiation | 202, 49, 69, 53 | ⊢ |
| : , : , : , : |
20 | instantiation | 202, 50, 69, 53 | ⊢ |
| : , : , : , : |
21 | instantiation | 202, 51, 69, 53 | ⊢ |
| : , : , : , : |
22 | instantiation | 202, 52, 69, 53 | ⊢ |
| : , : , : , : |
23 | theorem | | ⊢ |
| proveit.core_expr_types.expr_arrays.varray_eq_via_elem_eq |
24 | instantiation | 269 | ⊢ |
| : , : , : |
25 | instantiation | 269 | ⊢ |
| : , : , : |
26 | instantiation | 278 | ⊢ |
| : |
27 | instantiation | 278 | ⊢ |
| : |
28 | instantiation | 226, 54 | ⊢ |
| : , : |
29 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.circuit_equiv_temporal_sub |
30 | instantiation | 276 | ⊢ |
| : , : |
31 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.output_consolidation |
32 | instantiation | 276 | ⊢ |
| : , : |
33 | instantiation | 55, 56 | ⊢ |
| : , : |
34 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._u_ket_register |
35 | instantiation | 202, 57, 58, 59 | ⊢ |
| : , : , : , : |
36 | instantiation | 226, 60 | ⊢ |
| : , : |
37 | instantiation | 226, 61 | ⊢ |
| : , : |
38 | instantiation | 202, 62, 63, 64 | ⊢ |
| : , : , : , : |
39 | instantiation | 127, 190, 266, 101 | ⊢ |
| : , : , : |
40 | instantiation | 65, 293, 66, 67, 68, 69 | ⊢ |
| : , : |
41 | instantiation | 114, 310, 141 | ⊢ |
| : , : , : |
42 | instantiation | 114, 296, 236 | ⊢ |
| : , : , : |
43 | instantiation | 285, 141 | ⊢ |
| : , : , : |
44 | instantiation | 285, 236 | ⊢ |
| : , : , : |
45 | instantiation | 86, 70, 71, 72, 73, 91, 84, 92, 74, 75* | ⊢ |
| : , : , : , : |
46 | instantiation | 86, 76, 77, 78, 79, 91, 84, 92, 80* | ⊢ |
| : , : , : , : |
47 | instantiation | 226, 81 | ⊢ |
| : , : |
48 | instantiation | 226, 82 | ⊢ |
| : , : |
49 | instantiation | 86, 87, 83, 249, 233, 91, 84, 141*, 236* | ⊢ |
| : , : , : , : |
50 | instantiation | 86, 87, 85, 89, 90, 91, 92, 141*, 142* | ⊢ |
| : , : , : , : |
51 | instantiation | 116, 117 | ⊢ |
| : , : |
52 | instantiation | 86, 87, 88, 89, 90, 91, 92, 141*, 142* | ⊢ |
| : , : , : , : |
53 | instantiation | 226, 93 | ⊢ |
| : , : |
54 | instantiation | 94, 95, 96, 97 | ⊢ |
| : , : , : , : , : |
55 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.left_from_and |
56 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec |
57 | instantiation | 98 | ⊢ |
| : , : , : |
58 | instantiation | 278 | ⊢ |
| : |
59 | instantiation | 226, 99 | ⊢ |
| : , : |
60 | instantiation | 100, 103, 101 | ⊢ |
| : , : , : |
61 | instantiation | 102, 103, 104 | ⊢ |
| : , : , : |
62 | instantiation | 105 | ⊢ |
| : , : |
63 | instantiation | 278 | ⊢ |
| : |
64 | instantiation | 226, 106 | ⊢ |
| : , : |
65 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_all |
66 | instantiation | 269 | ⊢ |
| : , : , : |
67 | instantiation | 278 | ⊢ |
| : |
68 | instantiation | 226, 179 | ⊢ |
| : , : |
69 | instantiation | 278 | ⊢ |
| : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
71 | instantiation | 160 | ⊢ |
| : , : , : , : , : |
72 | instantiation | 160 | ⊢ |
| : , : , : , : , : |
73 | instantiation | 160 | ⊢ |
| : , : , : , : , : |
74 | instantiation | 114, 117, 134 | ⊢ |
| : , : , : |
75 | instantiation | 272, 107, 108 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
77 | instantiation | 168 | ⊢ |
| : , : , : , : , : , : |
78 | instantiation | 168 | ⊢ |
| : , : , : , : , : , : |
79 | instantiation | 168 | ⊢ |
| : , : , : , : , : , : |
80 | instantiation | 272, 109, 136 | ⊢ |
| : , : , : |
81 | instantiation | 245, 313, 308, 254, 233, 255, 225, 267, 271 | ⊢ |
| : , : , : , : , : , : |
82 | instantiation | 110, 111, 112, 117 | ⊢ |
| : , : , : |
83 | instantiation | 276 | ⊢ |
| : , : |
84 | instantiation | 114, 115, 236 | ⊢ |
| : , : , : |
85 | instantiation | 276 | ⊢ |
| : , : |
86 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.general_len |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
88 | instantiation | 276 | ⊢ |
| : , : |
89 | instantiation | 276 | ⊢ |
| : , : |
90 | instantiation | 276 | ⊢ |
| : , : |
91 | instantiation | 114, 113, 141 | ⊢ |
| : , : , : |
92 | instantiation | 114, 115, 142 | ⊢ |
| : , : , : |
93 | instantiation | 116, 117 | ⊢ |
| : , : |
94 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.merge |
95 | instantiation | 124, 118, 119 | ⊢ |
| : |
96 | instantiation | 124, 120, 121 | ⊢ |
| : |
97 | instantiation | 278 | ⊢ |
| : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3 |
99 | instantiation | 128, 122, 123 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_front |
101 | instantiation | 210, 266 | ⊢ |
| : |
102 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_back |
103 | instantiation | 124, 125, 126 | ⊢ |
| : |
104 | instantiation | 127, 266, 264, 286 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2 |
106 | instantiation | 128, 129, 130 | ⊢ |
| : , : , : |
107 | instantiation | 137, 131, 132, 133, 141, 236, 142, 134 | ⊢ |
| : , : , : , : |
108 | instantiation | 272, 135, 136 | ⊢ |
| : , : , : |
109 | instantiation | 137, 138, 139, 140, 141, 236, 142 | ⊢ |
| : , : , : , : |
110 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.len_of_ranges_with_repeated_indices_from_1 |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
112 | instantiation | 143, 293 | ⊢ |
| : , : |
113 | instantiation | 311, 181, 310 | ⊢ |
| : , : , : |
114 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
115 | instantiation | 311, 181, 296 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
117 | instantiation | 311, 181, 174 | ⊢ |
| : , : , : |
118 | instantiation | 152, 144, 299 | ⊢ |
| : , : |
119 | instantiation | 154, 145 | ⊢ |
| : , : |
120 | instantiation | 152, 146, 147 | ⊢ |
| : , : |
121 | instantiation | 154, 148 | ⊢ |
| : , : |
122 | instantiation | 156, 149 | ⊢ |
| : , : , : |
123 | instantiation | 272, 150, 151 | ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
125 | instantiation | 152, 300, 153 | ⊢ |
| : , : |
126 | instantiation | 154, 155 | ⊢ |
| : , : |
127 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
128 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
129 | instantiation | 156, 157 | ⊢ |
| : , : , : |
130 | instantiation | 272, 158, 159 | ⊢ |
| : , : , : |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
132 | instantiation | 160 | ⊢ |
| : , : , : , : , : |
133 | instantiation | 160 | ⊢ |
| : , : , : , : , : |
134 | instantiation | 272, 161, 162 | ⊢ |
| : , : , : |
135 | instantiation | 232, 163, 308, 254, 164, 233, 255, 267, 271 | ⊢ |
| : , : , : , : , : , : |
136 | instantiation | 202, 165, 166, 167 | ⊢ |
| : , : , : , : |
137 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
138 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
139 | instantiation | 168 | ⊢ |
| : , : , : , : , : , : |
140 | instantiation | 168 | ⊢ |
| : , : , : , : , : , : |
141 | instantiation | 259, 266, 267, 260 | ⊢ |
| : , : , : |
142 | instantiation | 272, 169, 170 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
144 | instantiation | 311, 173, 172 | ⊢ |
| : , : , : |
145 | instantiation | 171, 172 | ⊢ |
| : |
146 | instantiation | 311, 173, 174 | ⊢ |
| : , : , : |
147 | instantiation | 311, 175, 305 | ⊢ |
| : , : , : |
148 | instantiation | 176, 281, 177, 284, 178, 179*, 180* | ⊢ |
| : , : , : |
149 | instantiation | 311, 181, 182 | ⊢ |
| : , : , : |
150 | instantiation | 285, 263 | ⊢ |
| : , : , : |
151 | instantiation | 248, 254, 308, 313, 255, 183, 264, 190, 266, 184* | ⊢ |
| : , : , : , : , : , : |
152 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
153 | instantiation | 294, 185, 240 | ⊢ |
| : , : , : |
154 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.nonneg_difference |
155 | instantiation | 186, 308 | ⊢ |
| : |
156 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_len |
157 | instantiation | 187, 293, 188, 313, 214 | ⊢ |
| : , : |
158 | instantiation | 285, 263 | ⊢ |
| : , : , : |
159 | instantiation | 248, 254, 308, 313, 255, 189, 266, 190, 191* | ⊢ |
| : , : , : , : , : , : |
160 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
161 | instantiation | 232, 254, 308, 255, 233, 256, 267, 271, 257, 266 | ⊢ |
| : , : , : , : , : , : |
162 | instantiation | 192, 308, 254, 233, 255, 267, 271, 266 | ⊢ |
| : , : , : , : , : , : , : , : |
163 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
164 | instantiation | 193 | ⊢ |
| : , : , : , : |
165 | instantiation | 272, 194, 195 | ⊢ |
| : , : , : |
166 | instantiation | 248, 254, 293, 255, 196, 198, 267, 271, 197* | ⊢ |
| : , : , : , : , : , : |
167 | instantiation | 248, 313, 293, 254, 198, 255, 199, 271, 200* | ⊢ |
| : , : , : , : , : , : |
168 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
169 | instantiation | 285, 201 | ⊢ |
| : , : , : |
170 | instantiation | 202, 203, 204, 205 | ⊢ |
| : , : , : , : |
171 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
172 | instantiation | 207, 310, 206 | ⊢ |
| : , : |
173 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
174 | instantiation | 207, 310, 296 | ⊢ |
| : , : |
175 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.neg_int_within_int |
176 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
177 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
178 | instantiation | 208, 209 | ⊢ |
| : , : |
179 | instantiation | 210, 267 | ⊢ |
| : |
180 | instantiation | 226, 211 | ⊢ |
| : , : |
181 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
182 | instantiation | 212, 308, 254, 213, 255, 214, 313, 215 | ⊢ |
| : , : , : , : , : |
183 | instantiation | 276 | ⊢ |
| : , : |
184 | instantiation | 272, 216, 274 | ⊢ |
| : , : , : |
185 | instantiation | 302, 217 | ⊢ |
| : , : |
186 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
187 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure |
188 | instantiation | 269 | ⊢ |
| : , : , : |
189 | instantiation | 276 | ⊢ |
| : , : |
190 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
191 | instantiation | 272, 218, 286 | ⊢ |
| : , : , : |
192 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general_rev |
193 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
194 | instantiation | 220, 313, 293, 219, 267, 271 | ⊢ |
| : , : , : , : , : , : , : |
195 | instantiation | 220, 308, 313, 221, 222, 267, 271 | ⊢ |
| : , : , : , : , : , : , : |
196 | instantiation | 269 | ⊢ |
| : , : , : |
197 | instantiation | 226, 223, 228* | ⊢ |
| : , : |
198 | instantiation | 269 | ⊢ |
| : , : , : |
199 | instantiation | 224, 225, 267 | ⊢ |
| : , : |
200 | instantiation | 226, 227, 228* | ⊢ |
| : , : |
201 | instantiation | 229, 267, 266 | ⊢ |
| : , : |
202 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
203 | instantiation | 232, 254, 308, 255, 233, 230, 267, 271, 231, 266 | ⊢ |
| : , : , : , : , : , : |
204 | instantiation | 232, 308, 313, 233, 234, 267, 271, 252, 257, 266 | ⊢ |
| : , : , : , : , : , : |
205 | instantiation | 272, 235, 236 | ⊢ |
| : , : , : |
206 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
207 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
208 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
209 | instantiation | 237, 296 | ⊢ |
| : |
210 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
211 | instantiation | 238, 267, 271 | ⊢ |
| : , : |
212 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
213 | instantiation | 276 | ⊢ |
| : , : |
214 | instantiation | 294, 239, 240 | ⊢ |
| : , : , : |
215 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
216 | instantiation | 285, 241 | ⊢ |
| : , : , : |
217 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_set_within_int |
218 | instantiation | 285, 242 | ⊢ |
| : , : , : |
219 | instantiation | 269 | ⊢ |
| : , : , : |
220 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
221 | instantiation | 276 | ⊢ |
| : , : |
222 | instantiation | 276 | ⊢ |
| : , : |
223 | instantiation | 245, 254, 293, 313, 255, 246, 266, 267, 243* | ⊢ |
| : , : , : , : , : , : |
224 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
225 | instantiation | 311, 283, 244 | ⊢ |
| : , : , : |
226 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
227 | instantiation | 245, 254, 293, 313, 255, 246, 266, 271, 247* | ⊢ |
| : , : , : , : , : , : |
228 | instantiation | 248, 254, 308, 313, 255, 249, 266, 250* | ⊢ |
| : , : , : , : , : , : |
229 | theorem | | ⊢ |
| proveit.numbers.negation.distribute_neg_through_binary_sum |
230 | instantiation | 276 | ⊢ |
| : , : |
231 | instantiation | 251, 252, 257 | ⊢ |
| : , : |
232 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
233 | instantiation | 276 | ⊢ |
| : , : |
234 | instantiation | 276 | ⊢ |
| : , : |
235 | instantiation | 253, 254, 313, 308, 255, 256, 267, 271, 257, 266, 258 | ⊢ |
| : , : , : , : , : , : , : , : |
236 | instantiation | 259, 266, 271, 260 | ⊢ |
| : , : , : |
237 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
238 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
239 | instantiation | 302, 261 | ⊢ |
| : , : |
240 | instantiation | 262, 263 | ⊢ |
| : , : |
241 | instantiation | 265, 264 | ⊢ |
| : |
242 | instantiation | 265, 266 | ⊢ |
| : |
243 | instantiation | 270, 267 | ⊢ |
| : |
244 | instantiation | 311, 291, 268 | ⊢ |
| : , : , : |
245 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
246 | instantiation | 269 | ⊢ |
| : , : , : |
247 | instantiation | 270, 271 | ⊢ |
| : |
248 | theorem | | ⊢ |
| proveit.numbers.addition.association |
249 | instantiation | 276 | ⊢ |
| : , : |
250 | instantiation | 272, 273, 274 | ⊢ |
| : , : , : |
251 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
252 | instantiation | 311, 283, 275 | ⊢ |
| : , : , : |
253 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general |
254 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
255 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
256 | instantiation | 276 | ⊢ |
| : , : |
257 | instantiation | 311, 283, 277 | ⊢ |
| : , : , : |
258 | instantiation | 278 | ⊢ |
| : |
259 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
260 | instantiation | 278 | ⊢ |
| : |
261 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_set_within_nat |
262 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.fold_singleton |
263 | theorem | | ⊢ |
| proveit.numbers.negation.negated_zero |
264 | instantiation | 311, 283, 279 | ⊢ |
| : , : , : |
265 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
266 | instantiation | 311, 283, 280 | ⊢ |
| : , : , : |
267 | instantiation | 311, 283, 281 | ⊢ |
| : , : , : |
268 | instantiation | 311, 301, 282 | ⊢ |
| : , : , : |
269 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
270 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
271 | instantiation | 311, 283, 284 | ⊢ |
| : , : , : |
272 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
273 | instantiation | 285, 286 | ⊢ |
| : , : , : |
274 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
275 | instantiation | 311, 287, 288 | ⊢ |
| : , : , : |
276 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
277 | instantiation | 311, 291, 289 | ⊢ |
| : , : , : |
278 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
279 | instantiation | 311, 291, 290 | ⊢ |
| : , : , : |
280 | instantiation | 311, 291, 292 | ⊢ |
| : , : , : |
281 | instantiation | 294, 295, 310 | ⊢ |
| : , : , : |
282 | instantiation | 311, 312, 293 | ⊢ |
| : , : , : |
283 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
284 | instantiation | 294, 295, 296 | ⊢ |
| : , : , : |
285 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
286 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
287 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
288 | instantiation | 311, 297, 298 | ⊢ |
| : , : , : |
289 | instantiation | 311, 301, 299 | ⊢ |
| : , : , : |
290 | instantiation | 311, 301, 300 | ⊢ |
| : , : , : |
291 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
292 | instantiation | 311, 301, 307 | ⊢ |
| : , : , : |
293 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
294 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
295 | instantiation | 302, 303 | ⊢ |
| : , : |
296 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
297 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_neg_within_real_neg |
298 | instantiation | 311, 304, 305 | ⊢ |
| : , : , : |
299 | instantiation | 306, 307 | ⊢ |
| : |
300 | instantiation | 311, 312, 308 | ⊢ |
| : , : , : |
301 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
302 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
303 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
304 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.neg_int_within_rational_neg |
305 | instantiation | 309, 310 | ⊢ |
| : |
306 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
307 | instantiation | 311, 312, 313 | ⊢ |
| : , : , : |
308 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
309 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
310 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
311 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
312 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
313 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |