| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.qcircuit_eq |
2 | reference | 53 | ⊢ |
3 | instantiation | 86, 11, 12 | ⊢ |
| : , : |
4 | instantiation | 144, 13, 14 | ⊢ |
| : , : , : |
5 | instantiation | 97, 15, 17, 18 | ⊢ |
| : , : , : , : |
6 | instantiation | 97, 16, 17, 18 | ⊢ |
| : , : , : , : |
7 | instantiation | 97, 19, 23, 24 | ⊢ |
| : , : , : , : |
8 | instantiation | 97, 20, 23, 24 | ⊢ |
| : , : , : , : |
9 | instantiation | 97, 21, 23, 24 | ⊢ |
| : , : , : , : |
10 | instantiation | 97, 22, 23, 24 | ⊢ |
| : , : , : , : |
11 | instantiation | 56, 178, 70 | ⊢ |
| : , : , : |
12 | instantiation | 56, 166, 118 | ⊢ |
| : , : , : |
13 | instantiation | 156, 70 | ⊢ |
| : , : , : |
14 | instantiation | 156, 118 | ⊢ |
| : , : , : |
15 | instantiation | 41, 25, 26, 27, 28, 46, 39, 47, 29, 30* | ⊢ |
| : , : , : , : |
16 | instantiation | 41, 31, 32, 33, 34, 46, 39, 47, 35* | ⊢ |
| : , : , : , : |
17 | instantiation | 108, 36 | ⊢ |
| : , : |
18 | instantiation | 108, 37 | ⊢ |
| : , : |
19 | instantiation | 41, 42, 38, 125, 115, 46, 39, 70*, 118* | ⊢ |
| : , : , : , : |
20 | instantiation | 41, 42, 40, 44, 45, 46, 47, 70*, 71* | ⊢ |
| : , : , : , : |
21 | instantiation | 58, 59 | ⊢ |
| : , : |
22 | instantiation | 41, 42, 43, 44, 45, 46, 47, 70*, 71* | ⊢ |
| : , : , : , : |
23 | instantiation | 151 | ⊢ |
| : |
24 | instantiation | 108, 48 | ⊢ |
| : , : |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
26 | instantiation | 75 | ⊢ |
| : , : , : , : , : |
27 | instantiation | 75 | ⊢ |
| : , : , : , : , : |
28 | instantiation | 75 | ⊢ |
| : , : , : , : , : |
29 | instantiation | 56, 59, 63 | ⊢ |
| : , : , : |
30 | instantiation | 144, 49, 50 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
32 | instantiation | 83 | ⊢ |
| : , : , : , : , : , : |
33 | instantiation | 83 | ⊢ |
| : , : , : , : , : , : |
34 | instantiation | 83 | ⊢ |
| : , : , : , : , : , : |
35 | instantiation | 144, 51, 65 | ⊢ |
| : , : , : |
36 | instantiation | 121, 181, 131, 130, 115, 132, 107, 139, 143 | ⊢ |
| : , : , : , : , : , : |
37 | instantiation | 52, 53, 54, 59 | ⊢ |
| : , : , : |
38 | instantiation | 148 | ⊢ |
| : , : |
39 | instantiation | 56, 57, 118 | ⊢ |
| : , : , : |
40 | instantiation | 148 | ⊢ |
| : , : |
41 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.general_len |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
43 | instantiation | 148 | ⊢ |
| : , : |
44 | instantiation | 148 | ⊢ |
| : , : |
45 | instantiation | 148 | ⊢ |
| : , : |
46 | instantiation | 56, 55, 70 | ⊢ |
| : , : , : |
47 | instantiation | 56, 57, 71 | ⊢ |
| : , : , : |
48 | instantiation | 58, 59 | ⊢ |
| : , : |
49 | instantiation | 66, 60, 61, 62, 70, 118, 71, 63 | ⊢ |
| : , : , : , : |
50 | instantiation | 144, 64, 65 | ⊢ |
| : , : , : |
51 | instantiation | 66, 67, 68, 69, 70, 118, 71 | ⊢ |
| : , : , : , : |
52 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.len_of_ranges_with_repeated_indices_from_1 |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
54 | instantiation | 72, 163 | ⊢ |
| : , : |
55 | instantiation | 179, 73, 178 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
57 | instantiation | 179, 73, 166 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
59 | instantiation | 179, 73, 74 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
61 | instantiation | 75 | ⊢ |
| : , : , : , : , : |
62 | instantiation | 75 | ⊢ |
| : , : , : , : , : |
63 | instantiation | 144, 76, 77 | ⊢ |
| : , : , : |
64 | instantiation | 114, 78, 131, 130, 79, 115, 132, 139, 143 | ⊢ |
| : , : , : , : , : , : |
65 | instantiation | 97, 80, 81, 82 | ⊢ |
| : , : , : , : |
66 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
68 | instantiation | 83 | ⊢ |
| : , : , : , : , : , : |
69 | instantiation | 83 | ⊢ |
| : , : , : , : , : , : |
70 | instantiation | 136, 137, 139, 138 | ⊢ |
| : , : , : |
71 | instantiation | 144, 84, 85 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
73 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
74 | instantiation | 86, 178, 166 | ⊢ |
| : , : |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
76 | instantiation | 114, 130, 131, 132, 115, 133, 139, 143, 134, 137 | ⊢ |
| : , : , : , : , : , : |
77 | instantiation | 87, 131, 130, 115, 132, 139, 143, 137 | ⊢ |
| : , : , : , : , : , : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
79 | instantiation | 88 | ⊢ |
| : , : , : , : |
80 | instantiation | 144, 89, 90 | ⊢ |
| : , : , : |
81 | instantiation | 124, 130, 163, 132, 91, 93, 139, 143, 92* | ⊢ |
| : , : , : , : , : , : |
82 | instantiation | 124, 181, 163, 130, 93, 132, 94, 143, 95* | ⊢ |
| : , : , : , : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
84 | instantiation | 156, 96 | ⊢ |
| : , : , : |
85 | instantiation | 97, 98, 99, 100 | ⊢ |
| : , : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
87 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general_rev |
88 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
89 | instantiation | 102, 181, 163, 101, 139, 143 | ⊢ |
| : , : , : , : , : , : , : |
90 | instantiation | 102, 131, 181, 103, 104, 139, 143 | ⊢ |
| : , : , : , : , : , : , : |
91 | instantiation | 141 | ⊢ |
| : , : , : |
92 | instantiation | 108, 105, 110* | ⊢ |
| : , : |
93 | instantiation | 141 | ⊢ |
| : , : , : |
94 | instantiation | 106, 107, 139 | ⊢ |
| : , : |
95 | instantiation | 108, 109, 110* | ⊢ |
| : , : |
96 | instantiation | 111, 139, 137 | ⊢ |
| : , : |
97 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
98 | instantiation | 114, 130, 131, 132, 115, 112, 139, 143, 113, 137 | ⊢ |
| : , : , : , : , : , : |
99 | instantiation | 114, 131, 181, 115, 116, 139, 143, 128, 134, 137 | ⊢ |
| : , : , : , : , : , : |
100 | instantiation | 144, 117, 118 | ⊢ |
| : , : , : |
101 | instantiation | 141 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
103 | instantiation | 148 | ⊢ |
| : , : |
104 | instantiation | 148 | ⊢ |
| : , : |
105 | instantiation | 121, 130, 163, 181, 132, 122, 137, 139, 119* | ⊢ |
| : , : , : , : , : , : |
106 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
107 | instantiation | 179, 154, 120 | ⊢ |
| : , : , : |
108 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
109 | instantiation | 121, 130, 163, 181, 132, 122, 137, 143, 123* | ⊢ |
| : , : , : , : , : , : |
110 | instantiation | 124, 130, 131, 181, 132, 125, 137, 126* | ⊢ |
| : , : , : , : , : , : |
111 | theorem | | ⊢ |
| proveit.numbers.negation.distribute_neg_through_binary_sum |
112 | instantiation | 148 | ⊢ |
| : , : |
113 | instantiation | 127, 128, 134 | ⊢ |
| : , : |
114 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
115 | instantiation | 148 | ⊢ |
| : , : |
116 | instantiation | 148 | ⊢ |
| : , : |
117 | instantiation | 129, 130, 181, 131, 132, 133, 139, 143, 134, 137, 135 | ⊢ |
| : , : , : , : , : , : , : , : |
118 | instantiation | 136, 137, 143, 138 | ⊢ |
| : , : , : |
119 | instantiation | 142, 139 | ⊢ |
| : |
120 | instantiation | 179, 161, 140 | ⊢ |
| : , : , : |
121 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
122 | instantiation | 141 | ⊢ |
| : , : , : |
123 | instantiation | 142, 143 | ⊢ |
| : |
124 | theorem | | ⊢ |
| proveit.numbers.addition.association |
125 | instantiation | 148 | ⊢ |
| : , : |
126 | instantiation | 144, 145, 146 | ⊢ |
| : , : , : |
127 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
128 | instantiation | 179, 154, 147 | ⊢ |
| : , : , : |
129 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general |
130 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
132 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
133 | instantiation | 148 | ⊢ |
| : , : |
134 | instantiation | 179, 154, 149 | ⊢ |
| : , : , : |
135 | instantiation | 151 | ⊢ |
| : |
136 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
137 | instantiation | 179, 154, 150 | ⊢ |
| : , : , : |
138 | instantiation | 151 | ⊢ |
| : |
139 | instantiation | 179, 154, 152 | ⊢ |
| : , : , : |
140 | instantiation | 179, 170, 153 | ⊢ |
| : , : , : |
141 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
142 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
143 | instantiation | 179, 154, 155 | ⊢ |
| : , : , : |
144 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
145 | instantiation | 156, 157 | ⊢ |
| : , : , : |
146 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
147 | instantiation | 179, 158, 159 | ⊢ |
| : , : , : |
148 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
149 | instantiation | 179, 161, 160 | ⊢ |
| : , : , : |
150 | instantiation | 179, 161, 162 | ⊢ |
| : , : , : |
151 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
152 | instantiation | 164, 165, 178 | ⊢ |
| : , : , : |
153 | instantiation | 179, 180, 163 | ⊢ |
| : , : , : |
154 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
155 | instantiation | 164, 165, 166 | ⊢ |
| : , : , : |
156 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
157 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
158 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
159 | instantiation | 179, 167, 168 | ⊢ |
| : , : , : |
160 | instantiation | 179, 170, 169 | ⊢ |
| : , : , : |
161 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
162 | instantiation | 179, 170, 176 | ⊢ |
| : , : , : |
163 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
164 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
165 | instantiation | 171, 172 | ⊢ |
| : , : |
166 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
167 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_neg_within_real_neg |
168 | instantiation | 179, 173, 174 | ⊢ |
| : , : , : |
169 | instantiation | 175, 176 | ⊢ |
| : |
170 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
171 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
172 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
173 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.neg_int_within_rational_neg |
174 | instantiation | 177, 178 | ⊢ |
| : |
175 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
176 | instantiation | 179, 180, 181 | ⊢ |
| : , : , : |
177 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
178 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
179 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
180 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
181 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |