| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20* | ⊢ |
| : , : , : , : , : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.output_consolidation |
2 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
3 | instantiation | 104 | ⊢ |
| : , : |
4 | reference | 89 | ⊢ |
5 | reference | 48 | ⊢ |
6 | instantiation | 104 | ⊢ |
| : , : |
7 | instantiation | 21, 22 | ⊢ |
| : , : |
8 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._u_ket_register |
9 | instantiation | 28, 23, 24, 25 | ⊢ |
| : , : , : , : |
10 | instantiation | 49, 26 | ⊢ |
| : , : |
11 | instantiation | 104 | ⊢ |
| : , : |
12 | instantiation | 49, 27 | ⊢ |
| : , : |
13 | instantiation | 28, 29, 30, 31 | ⊢ |
| : , : , : , : |
14 | instantiation | 57, 86, 117, 41 | ⊢ |
| : , : , : |
15 | reference | 44 | ⊢ |
16 | reference | 91 | ⊢ |
17 | instantiation | 128, 75, 89 | ⊢ |
| : , : , : |
18 | instantiation | 128, 75, 32 | ⊢ |
| : , : , : |
19 | instantiation | 33, 82, 34, 35, 36, 37 | ⊢ |
| : , : |
20 | reference | 41 | ⊢ |
21 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.left_from_and |
22 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec |
23 | instantiation | 38 | ⊢ |
| : , : , : |
24 | instantiation | 51 | ⊢ |
| : |
25 | instantiation | 49, 39 | ⊢ |
| : , : |
26 | instantiation | 40, 43, 41 | ⊢ |
| : , : , : |
27 | instantiation | 42, 43, 44 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
29 | instantiation | 45 | ⊢ |
| : , : |
30 | instantiation | 51 | ⊢ |
| : |
31 | instantiation | 49, 46 | ⊢ |
| : , : |
32 | instantiation | 47, 89, 48 | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_all |
34 | instantiation | 99 | ⊢ |
| : , : , : |
35 | instantiation | 51 | ⊢ |
| : |
36 | instantiation | 49, 50 | ⊢ |
| : , : |
37 | instantiation | 51 | ⊢ |
| : |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3 |
39 | instantiation | 58, 52, 53 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_front |
41 | instantiation | 61, 117 | ⊢ |
| : |
42 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_back |
43 | instantiation | 54, 55, 56 | ⊢ |
| : |
44 | instantiation | 57, 117, 115, 102 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2 |
46 | instantiation | 58, 59, 60 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
48 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
49 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
50 | instantiation | 61, 62 | ⊢ |
| : |
51 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
52 | instantiation | 70, 63 | ⊢ |
| : , : , : |
53 | instantiation | 100, 64, 65 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
55 | instantiation | 66, 124, 67 | ⊢ |
| : , : |
56 | instantiation | 68, 69 | ⊢ |
| : , : |
57 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
58 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
59 | instantiation | 70, 71 | ⊢ |
| : , : , : |
60 | instantiation | 100, 72, 73 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
62 | instantiation | 128, 119, 74 | ⊢ |
| : , : , : |
63 | instantiation | 128, 75, 76 | ⊢ |
| : , : , : |
64 | instantiation | 109, 114 | ⊢ |
| : , : , : |
65 | instantiation | 84, 91, 127, 130, 93, 77, 115, 86, 117, 78* | ⊢ |
| : , : , : , : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
67 | instantiation | 105, 79, 107 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.nonneg_difference |
69 | instantiation | 80, 127 | ⊢ |
| : |
70 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_len |
71 | instantiation | 81, 82, 83, 130, 94 | ⊢ |
| : , : |
72 | instantiation | 109, 114 | ⊢ |
| : , : , : |
73 | instantiation | 84, 91, 127, 130, 93, 85, 117, 86, 87* | ⊢ |
| : , : , : , : , : , : |
74 | instantiation | 105, 88, 89 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
76 | instantiation | 90, 127, 91, 92, 93, 94, 130, 95 | ⊢ |
| : , : , : , : , : |
77 | instantiation | 104 | ⊢ |
| : , : |
78 | instantiation | 100, 96, 97 | ⊢ |
| : , : , : |
79 | instantiation | 111, 98 | ⊢ |
| : , : |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
81 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure |
82 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
83 | instantiation | 99 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.addition.association |
85 | instantiation | 104 | ⊢ |
| : , : |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
87 | instantiation | 100, 101, 102 | ⊢ |
| : , : , : |
88 | instantiation | 111, 103 | ⊢ |
| : , : |
89 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
90 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
91 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
92 | instantiation | 104 | ⊢ |
| : , : |
93 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
94 | instantiation | 105, 106, 107 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
96 | instantiation | 109, 108 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_set_within_int |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
100 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
101 | instantiation | 109, 110 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
105 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
106 | instantiation | 111, 112 | ⊢ |
| : , : |
107 | instantiation | 113, 114 | ⊢ |
| : , : |
108 | instantiation | 116, 115 | ⊢ |
| : |
109 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
110 | instantiation | 116, 117 | ⊢ |
| : |
111 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_set_within_nat |
113 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.fold_singleton |
114 | theorem | | ⊢ |
| proveit.numbers.negation.negated_zero |
115 | instantiation | 128, 119, 118 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
117 | instantiation | 128, 119, 120 | ⊢ |
| : , : , : |
118 | instantiation | 128, 122, 121 | ⊢ |
| : , : , : |
119 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
120 | instantiation | 128, 122, 123 | ⊢ |
| : , : , : |
121 | instantiation | 128, 125, 124 | ⊢ |
| : , : , : |
122 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
123 | instantiation | 128, 125, 126 | ⊢ |
| : , : , : |
124 | instantiation | 128, 129, 127 | ⊢ |
| : , : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
126 | instantiation | 128, 129, 130 | ⊢ |
| : , : , : |
127 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
128 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
129 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
130 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |