| step type | requirements | statement |
0 | instantiation | 1, 2 | ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.prob_eq_via_equiv |
2 | modus ponens | 3, 4 | ⊢ |
3 | instantiation | 5, 128, 131, 92, 6, 94 | ⊢ |
| : , : , : , : , : , : , : , : |
4 | instantiation | 7, 8, 9, 90, 49, 10, 11, 12, 13, 14, 15, 16, 17, 18, 45, 92, 19, 20, 21, 42* | ⊢ |
| : , : , : , : , : , : |
5 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.circuit_equiv_temporal_sub |
6 | instantiation | 105 | ⊢ |
| : , : |
7 | theorem | | ⊢ |
| proveit.physics.quantum.circuits.output_consolidation |
8 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
9 | instantiation | 105 | ⊢ |
| : , : |
10 | instantiation | 105 | ⊢ |
| : , : |
11 | instantiation | 22, 23 | ⊢ |
| : , : |
12 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._u_ket_register |
13 | instantiation | 29, 24, 25, 26 | ⊢ |
| : , : , : , : |
14 | instantiation | 50, 27 | ⊢ |
| : , : |
15 | instantiation | 105 | ⊢ |
| : , : |
16 | instantiation | 50, 28 | ⊢ |
| : , : |
17 | instantiation | 29, 30, 31, 32 | ⊢ |
| : , : , : , : |
18 | instantiation | 58, 87, 118, 42 | ⊢ |
| : , : , : |
19 | instantiation | 129, 76, 90 | ⊢ |
| : , : , : |
20 | instantiation | 129, 76, 33 | ⊢ |
| : , : , : |
21 | instantiation | 34, 83, 35, 36, 37, 38 | ⊢ |
| : , : |
22 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.left_from_and |
23 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._Psi_ket_is_normalized_vec |
24 | instantiation | 39 | ⊢ |
| : , : , : |
25 | instantiation | 52 | ⊢ |
| : |
26 | instantiation | 50, 40 | ⊢ |
| : , : |
27 | instantiation | 41, 44, 42 | ⊢ |
| : , : , : |
28 | instantiation | 43, 44, 45 | ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
30 | instantiation | 46 | ⊢ |
| : , : |
31 | instantiation | 52 | ⊢ |
| : |
32 | instantiation | 50, 47 | ⊢ |
| : , : |
33 | instantiation | 48, 90, 49 | ⊢ |
| : , : |
34 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_all |
35 | instantiation | 100 | ⊢ |
| : , : , : |
36 | instantiation | 52 | ⊢ |
| : |
37 | instantiation | 50, 51 | ⊢ |
| : , : |
38 | instantiation | 52 | ⊢ |
| : |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3 |
40 | instantiation | 59, 53, 54 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_front |
42 | instantiation | 62, 118 | ⊢ |
| : |
43 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.partition_back |
44 | instantiation | 55, 56, 57 | ⊢ |
| : |
45 | instantiation | 58, 118, 116, 103 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2 |
47 | instantiation | 59, 60, 61 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
49 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._s_in_nat_pos |
50 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
51 | instantiation | 62, 63 | ⊢ |
| : |
52 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
53 | instantiation | 71, 64 | ⊢ |
| : , : , : |
54 | instantiation | 101, 65, 66 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
56 | instantiation | 67, 125, 68 | ⊢ |
| : , : |
57 | instantiation | 69, 70 | ⊢ |
| : , : |
58 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
59 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
60 | instantiation | 71, 72 | ⊢ |
| : , : , : |
61 | instantiation | 101, 73, 74 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
63 | instantiation | 129, 120, 75 | ⊢ |
| : , : , : |
64 | instantiation | 129, 76, 77 | ⊢ |
| : , : , : |
65 | instantiation | 110, 115 | ⊢ |
| : , : , : |
66 | instantiation | 85, 92, 128, 131, 94, 78, 116, 87, 118, 79* | ⊢ |
| : , : , : , : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
68 | instantiation | 106, 80, 108 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.nonneg_difference |
70 | instantiation | 81, 128 | ⊢ |
| : |
71 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_len |
72 | instantiation | 82, 83, 84, 131, 95 | ⊢ |
| : , : |
73 | instantiation | 110, 115 | ⊢ |
| : , : , : |
74 | instantiation | 85, 92, 128, 131, 94, 86, 118, 87, 88* | ⊢ |
| : , : , : , : , : , : |
75 | instantiation | 106, 89, 90 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
77 | instantiation | 91, 128, 92, 93, 94, 95, 131, 96 | ⊢ |
| : , : , : , : , : |
78 | instantiation | 105 | ⊢ |
| : , : |
79 | instantiation | 101, 97, 98 | ⊢ |
| : , : , : |
80 | instantiation | 112, 99 | ⊢ |
| : , : |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
82 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
84 | instantiation | 100 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.addition.association |
86 | instantiation | 105 | ⊢ |
| : , : |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
88 | instantiation | 101, 102, 103 | ⊢ |
| : , : , : |
89 | instantiation | 112, 104 | ⊢ |
| : , : |
90 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
91 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
92 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
93 | instantiation | 105 | ⊢ |
| : , : |
94 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
95 | instantiation | 106, 107, 108 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
97 | instantiation | 110, 109 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_set_within_int |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
101 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
102 | instantiation | 110, 111 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
106 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
107 | instantiation | 112, 113 | ⊢ |
| : , : |
108 | instantiation | 114, 115 | ⊢ |
| : , : |
109 | instantiation | 117, 116 | ⊢ |
| : |
110 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
111 | instantiation | 117, 118 | ⊢ |
| : |
112 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
113 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_set_within_nat |
114 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.fold_singleton |
115 | theorem | | ⊢ |
| proveit.numbers.negation.negated_zero |
116 | instantiation | 129, 120, 119 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
118 | instantiation | 129, 120, 121 | ⊢ |
| : , : , : |
119 | instantiation | 129, 123, 122 | ⊢ |
| : , : , : |
120 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
121 | instantiation | 129, 123, 124 | ⊢ |
| : , : , : |
122 | instantiation | 129, 126, 125 | ⊢ |
| : , : , : |
123 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
124 | instantiation | 129, 126, 127 | ⊢ |
| : , : , : |
125 | instantiation | 129, 130, 128 | ⊢ |
| : , : , : |
126 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
127 | instantiation | 129, 130, 131 | ⊢ |
| : , : , : |
128 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
129 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |