logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import ket_plus
from proveit.physics.quantum.QPE import QPE, _Psi_ket, _U, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, one)
sub_expr3 = Add(_t, _s)
sub_expr4 = Interval(one, sub_expr3)
sub_expr5 = MultiQubitElem(element = Gate(operation = QPE(_U, _t), part = sub_expr1), targets = sub_expr4)
sub_expr6 = MultiQubitElem(element = Output(state = TensorProd(_Psi_ket, _ket_u), part = sub_expr1), targets = sub_expr4)
sub_expr7 = [ExprRange(sub_expr1, Input(state = ket_plus), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr2, sub_expr3)), one, _s)]
sub_expr8 = [ExprRange(sub_expr1, sub_expr5, one, _t), ExprRange(sub_expr1, sub_expr5, sub_expr2, sub_expr3)]
expr = Equals([Qcircuit(vert_expr_array = VertExprArray(sub_expr7, sub_expr8, [ExprRange(sub_expr1, sub_expr6, one, sub_expr3)]))], [Qcircuit(vert_expr_array = VertExprArray(sub_expr7, sub_expr8, [ExprRange(sub_expr1, sub_expr6, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr6, sub_expr2, sub_expr3).with_wrapping_at(2,6)]))])
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(QCIRCUIT\left(VertExprArray\left(\begin{array}{c} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array}, ..\left(t - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array}\right)\right)\right) = \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}\left(U, t\right)} & \multiqout{4}{\lvert \Psi \rangle {\otimes} \lvert u \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle {\otimes} \lvert u \rangle} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle {\otimes} \lvert u \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle {\otimes} \lvert u \rangle} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \ghostqout{\lvert \Psi \rangle {\otimes} \lvert u \rangle}
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3ExprTuple5
4ExprTuple6
5Operationoperator: 8
operands: 7
6Operationoperator: 8
operands: 9
7ExprTuple11, 12, 10
8Literal
9ExprTuple11, 12, 13
10ExprTuple14
11ExprTuple15, 16
12ExprTuple17, 18
13ExprTuple19, 20
14ExprRangelambda_map: 24
start_index: 65
end_index: 57
15ExprRangelambda_map: 21
start_index: 65
end_index: 69
16ExprRangelambda_map: 22
start_index: 65
end_index: 70
17ExprRangelambda_map: 23
start_index: 65
end_index: 69
18ExprRangelambda_map: 23
start_index: 53
end_index: 57
19ExprRangelambda_map: 24
start_index: 65
end_index: 69
20ExprRangelambda_map: 24
start_index: 53
end_index: 57
21Lambdaparameter: 56
body: 25
22Lambdaparameter: 56
body: 26
23Lambdaparameter: 56
body: 27
24Lambdaparameter: 56
body: 29
25Operationoperator: 43
operands: 30
26Operationoperator: 33
operands: 31
27Operationoperator: 33
operands: 32
28ExprTuple56
29Operationoperator: 33
operands: 34
30NamedExprsstate: 35
31NamedExprselement: 36
targets: 37
32NamedExprselement: 38
targets: 40
33Literal
34NamedExprselement: 39
targets: 40
35Operationoperator: 41
operand: 52
36Operationoperator: 43
operands: 44
37Operationoperator: 50
operands: 45
38Operationoperator: 46
operands: 47
39Operationoperator: 48
operands: 49
40Operationoperator: 50
operands: 51
41Literal
42ExprTuple52
43Literal
44NamedExprsstate: 68
part: 56
45ExprTuple53, 57
46Literal
47NamedExprsoperation: 54
part: 56
48Literal
49NamedExprsstate: 55
part: 56
50Literal
51ExprTuple65, 57
52Literal
53Operationoperator: 63
operands: 58
54Operationoperator: 59
operands: 60
55Operationoperator: 61
operands: 62
56Variable
57Operationoperator: 63
operands: 64
58ExprTuple69, 65
59Literal
60ExprTuple66, 69
61Literal
62ExprTuple67, 68
63Literal
64ExprTuple69, 70
65Literal
66Literal
67Literal
68Literal
69Literal
70Literal