logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import ket_plus
from proveit.physics.quantum.QPE import QPE, _Psi_ket, _U, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, one)
sub_expr3 = Add(_t, _s)
sub_expr4 = Interval(one, sub_expr3)
sub_expr5 = MultiQubitElem(element = Gate(operation = QPE(_U, _t), part = sub_expr1), targets = sub_expr4)
sub_expr6 = MultiQubitElem(element = Output(state = TensorProd(_Psi_ket, _ket_u), part = sub_expr1), targets = sub_expr4)
sub_expr7 = [ExprRange(sub_expr1, Input(state = ket_plus), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr2, sub_expr3)), one, _s)]
sub_expr8 = [ExprRange(sub_expr1, sub_expr5, one, _t), ExprRange(sub_expr1, sub_expr5, sub_expr2, sub_expr3)]
expr = Equals(VertExprArray(sub_expr7, sub_expr8, [ExprRange(sub_expr1, sub_expr6, one, sub_expr3)]), VertExprArray(sub_expr7, sub_expr8, [ExprRange(sub_expr1, sub_expr6, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr6, sub_expr2, sub_expr3).with_wrapping_at(2,6)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
VertExprArray\left(\begin{array}{c} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array}, ..\left(t - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right),  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array}\right) = \left(\begin{array}{ccc} 
 \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array} & \vdots & \vdots \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\vdots & \vdots & \vdots \\
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array} & \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array} \\
\end{array}
\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3ExprTuple6, 7, 5
4ExprTuple6, 7, 8
5ExprTuple9
6ExprTuple10, 11
7ExprTuple12, 13
8ExprTuple14, 15
9ExprRangelambda_map: 19
start_index: 60
end_index: 52
10ExprRangelambda_map: 16
start_index: 60
end_index: 64
11ExprRangelambda_map: 17
start_index: 60
end_index: 65
12ExprRangelambda_map: 18
start_index: 60
end_index: 64
13ExprRangelambda_map: 18
start_index: 48
end_index: 52
14ExprRangelambda_map: 19
start_index: 60
end_index: 64
15ExprRangelambda_map: 19
start_index: 48
end_index: 52
16Lambdaparameter: 51
body: 20
17Lambdaparameter: 51
body: 21
18Lambdaparameter: 51
body: 22
19Lambdaparameter: 51
body: 24
20Operationoperator: 38
operands: 25
21Operationoperator: 28
operands: 26
22Operationoperator: 28
operands: 27
23ExprTuple51
24Operationoperator: 28
operands: 29
25NamedExprsstate: 30
26NamedExprselement: 31
targets: 32
27NamedExprselement: 33
targets: 35
28Literal
29NamedExprselement: 34
targets: 35
30Operationoperator: 36
operand: 47
31Operationoperator: 38
operands: 39
32Operationoperator: 45
operands: 40
33Operationoperator: 41
operands: 42
34Operationoperator: 43
operands: 44
35Operationoperator: 45
operands: 46
36Literal
37ExprTuple47
38Literal
39NamedExprsstate: 63
part: 51
40ExprTuple48, 52
41Literal
42NamedExprsoperation: 49
part: 51
43Literal
44NamedExprsstate: 50
part: 51
45Literal
46ExprTuple60, 52
47Literal
48Operationoperator: 58
operands: 53
49Operationoperator: 54
operands: 55
50Operationoperator: 56
operands: 57
51Variable
52Operationoperator: 58
operands: 59
53ExprTuple64, 60
54Literal
55ExprTuple61, 64
56Literal
57ExprTuple62, 63
58Literal
59ExprTuple64, 65
60Literal
61Literal
62Literal
63Literal
64Literal
65Literal