| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4* | , , , , ⊢  |
| | : , : , :  |
| 1 | reference | 105 | ⊢  |
| 2 | instantiation | 93, 130, 161, 5, 21, 6, 7, 23 | , , , , ⊢  |
| | : , : , : , : , : , :  |
| 3 | instantiation | 8, 9, 10, 11 | , , ⊢  |
| | : , : , : , :  |
| 4 | instantiation | 122, 12, 13 | , , , , ⊢  |
| | : , : , :  |
| 5 | instantiation | 144 | ⊢  |
| | : , :  |
| 6 | instantiation | 54, 76, 14 | , ⊢  |
| | : , :  |
| 7 | instantiation | 54, 76, 15 | , ⊢  |
| | : , :  |
| 8 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 9 | instantiation | 79, 16 | , ⊢  |
| | : , : , :  |
| 10 | instantiation | 79, 17 | , ⊢  |
| | : , : , :  |
| 11 | instantiation | 52, 18 | , , ⊢  |
| | : , :  |
| 12 | instantiation | 79, 19 | , , ⊢  |
| | : , : , :  |
| 13 | instantiation | 93, 130, 161, 133, 20, 134, 21, 22, 23, 24* | , , , , ⊢  |
| | : , : , : , : , : , :  |
| 14 | instantiation | 105, 25, 26 | , ⊢  |
| | : , : , :  |
| 15 | instantiation | 105, 27, 28 | , ⊢  |
| | : , : , :  |
| 16 | instantiation | 122, 29, 30 | , ⊢  |
| | : , : , :  |
| 17 | instantiation | 122, 31, 32 | , ⊢  |
| | : , : , :  |
| 18 | instantiation | 33, 34, 35, 126, 36, 37 | , , ⊢  |
| | : , : , :  |
| 19 | instantiation | 122, 38, 39 | , , ⊢  |
| | : , : , :  |
| 20 | instantiation | 144 | ⊢  |
| | : , :  |
| 21 | instantiation | 159, 149, 40 | , ⊢  |
| | : , : , :  |
| 22 | instantiation | 54, 76, 41 | , , ⊢  |
| | : , :  |
| 23 | instantiation | 54, 76, 42 | ⊢  |
| | : , :  |
| 24 | instantiation | 81, 117, 41, 42 | , , , ⊢  |
| | : , : , :  |
| 25 | instantiation | 141, 131, 43 | , ⊢  |
| | : , :  |
| 26 | instantiation | 122, 44, 45 | , ⊢  |
| | : , : , :  |
| 27 | instantiation | 141, 131, 46 | , ⊢  |
| | : , :  |
| 28 | instantiation | 122, 47, 48 | , ⊢  |
| | : , : , :  |
| 29 | instantiation | 79, 49 | , ⊢  |
| | : , : , :  |
| 30 | instantiation | 52, 50 | , ⊢  |
| | : , :  |
| 31 | instantiation | 79, 51 | , ⊢  |
| | : , : , :  |
| 32 | instantiation | 52, 53 | , ⊢  |
| | : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.real_power_of_product |
| 34 | instantiation | 54, 76, 83 | ⊢  |
| | : , :  |
| 35 | instantiation | 54, 76, 84 | ⊢  |
| | : , :  |
| 36 | instantiation | 55, 56, 57 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 75, 76, 84, 78 | ⊢  |
| | : , :  |
| 38 | instantiation | 79, 58 | , ⊢  |
| | : , : , :  |
| 39 | instantiation | 59, 117, 62, 110 | , , ⊢  |
| | : , : , :  |
| 40 | instantiation | 60, 61, 125 | , ⊢  |
| | : , :  |
| 41 | instantiation | 141, 62, 110 | , , ⊢  |
| | : , :  |
| 42 | instantiation | 105, 63, 64 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 105, 65, 66 | , ⊢  |
| | : , : , :  |
| 44 | instantiation | 132, 130, 91, 133, 67, 134, 131, 137, 110, 129 | , ⊢  |
| | : , : , : , : , : , :  |
| 45 | instantiation | 132, 133, 161, 91, 134, 135, 67, 142, 143, 137, 110, 129 | , ⊢  |
| | : , : , : , : , : , :  |
| 46 | instantiation | 105, 68, 69 | , ⊢  |
| | : , : , :  |
| 47 | instantiation | 132, 130, 91, 133, 70, 134, 131, 137, 138, 110 | , ⊢  |
| | : , : , : , : , : , :  |
| 48 | instantiation | 132, 133, 161, 91, 134, 135, 70, 142, 143, 137, 138, 110 | , ⊢  |
| | : , : , : , : , : , :  |
| 49 | instantiation | 122, 71, 72 | , ⊢  |
| | : , : , :  |
| 50 | instantiation | 74, 76, 83, 78 | , ⊢  |
| | : , :  |
| 51 | instantiation | 93, 133, 94, 130, 134, 73, 142, 143, 137, 138, 110 | , ⊢  |
| | : , : , : , : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 53 | instantiation | 74, 76, 84, 78 | , ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 55 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 56 | instantiation | 75, 76, 77, 78 | ⊢  |
| | : , :  |
| 57 | instantiation | 79, 80 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 81, 117, 83, 84 | , ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_power_of_complex_power |
| 60 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 61 | assumption | | ⊢  |
| 62 | instantiation | 82, 83, 84 | , ⊢  |
| | : , :  |
| 63 | instantiation | 141, 131, 85 | ⊢  |
| | : , :  |
| 64 | instantiation | 122, 86, 87 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 141, 88, 129 | , ⊢  |
| | : , :  |
| 66 | instantiation | 132, 133, 161, 130, 134, 89, 137, 110, 129 | , ⊢  |
| | : , : , : , : , : , :  |
| 67 | instantiation | 111 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 141, 121, 110 | , ⊢  |
| | : , :  |
| 69 | instantiation | 132, 133, 161, 130, 134, 136, 137, 138, 110 | , ⊢  |
| | : , : , : , : , : , :  |
| 70 | instantiation | 111 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 90, 91, 130, 133, 92, 134, 142, 143, 137, 110, 129 | , ⊢  |
| | : , : , : , : , : , : , :  |
| 72 | instantiation | 93, 133, 94, 130, 134, 95, 142, 143, 137, 129, 110 | , ⊢  |
| | : , : , : , : , : , :  |
| 73 | instantiation | 112 | ⊢  |
| | : , : , : , :  |
| 74 | instantiation | 96, 146 | ⊢  |
| | :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_not_eq_zero |
| 76 | instantiation | 159, 149, 97 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 105, 98, 99 | ⊢  |
| | : , : , :  |
| 78 | instantiation | 100, 101 | ⊢  |
| | :  |
| 79 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 80 | instantiation | 102, 161, 130, 133, 135, 134, 142, 143, 137, 129 | ⊢  |
| | : , : , : , : , : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_complex_powers |
| 82 | theorem | | ⊢  |
| | proveit.numbers.addition.add_complex_closure_bin |
| 83 | instantiation | 105, 103, 104 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 105, 106, 107 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 141, 137, 109 | ⊢  |
| | : , :  |
| 86 | instantiation | 132, 130, 161, 133, 108, 134, 131, 137, 109 | ⊢  |
| | : , : , : , : , : , :  |
| 87 | instantiation | 132, 133, 161, 134, 135, 108, 142, 143, 137, 109 | ⊢  |
| | : , : , : , : , : , :  |
| 88 | instantiation | 141, 137, 110 | ⊢  |
| | : , :  |
| 89 | instantiation | 144 | ⊢  |
| | : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 92 | instantiation | 111 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 94 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 95 | instantiation | 112 | ⊢  |
| | : , : , : , :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.int_exp_of_exp |
| 97 | instantiation | 159, 155, 117 | ⊢  |
| | : , : , :  |
| 98 | instantiation | 141, 131, 113 | ⊢  |
| | : , :  |
| 99 | instantiation | 122, 114, 115 | ⊢  |
| | : , : , :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
| 101 | instantiation | 159, 116, 117 | ⊢  |
| | : , : , :  |
| 102 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 103 | instantiation | 141, 131, 118 | ⊢  |
| | : , :  |
| 104 | instantiation | 122, 119, 120 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 106 | instantiation | 141, 131, 121 | ⊢  |
| | : , :  |
| 107 | instantiation | 122, 123, 124 | ⊢  |
| | : , : , :  |
| 108 | instantiation | 144 | ⊢  |
| | : , :  |
| 109 | instantiation | 159, 149, 125 | ⊢  |
| | : , : , :  |
| 110 | instantiation | 159, 149, 126 | ⊢  |
| | : , : , :  |
| 111 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 112 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 113 | instantiation | 141, 129, 137 | ⊢  |
| | : , :  |
| 114 | instantiation | 132, 130, 161, 133, 127, 134, 131, 129, 137 | ⊢  |
| | : , : , : , : , : , :  |
| 115 | instantiation | 132, 133, 161, 134, 135, 127, 142, 143, 129, 137 | ⊢  |
| | : , : , : , : , : , :  |
| 116 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
| 117 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.e_is_real_pos |
| 118 | instantiation | 141, 137, 129 | ⊢  |
| | : , :  |
| 119 | instantiation | 132, 130, 161, 133, 128, 134, 131, 137, 129 | ⊢  |
| | : , : , : , : , : , :  |
| 120 | instantiation | 132, 133, 161, 134, 135, 128, 142, 143, 137, 129 | ⊢  |
| | : , : , : , : , : , :  |
| 121 | instantiation | 141, 137, 138 | ⊢  |
| | : , :  |
| 122 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 123 | instantiation | 132, 130, 161, 133, 136, 134, 131, 137, 138 | ⊢  |
| | : , : , : , : , : , :  |
| 124 | instantiation | 132, 133, 161, 134, 135, 136, 142, 143, 137, 138 | ⊢  |
| | : , : , : , : , : , :  |
| 125 | assumption | | ⊢  |
| 126 | instantiation | 159, 153, 139 | ⊢  |
| | : , : , :  |
| 127 | instantiation | 144 | ⊢  |
| | : , :  |
| 128 | instantiation | 144 | ⊢  |
| | : , :  |
| 129 | instantiation | 159, 149, 140 | ⊢  |
| | : , : , :  |
| 130 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 131 | instantiation | 141, 142, 143 | ⊢  |
| | : , :  |
| 132 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 133 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 134 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 135 | instantiation | 144 | ⊢  |
| | : , :  |
| 136 | instantiation | 144 | ⊢  |
| | : , :  |
| 137 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.i_is_complex |
| 138 | instantiation | 159, 149, 145 | ⊢  |
| | : , : , :  |
| 139 | instantiation | 159, 157, 146 | ⊢  |
| | : , : , :  |
| 140 | instantiation | 159, 153, 147 | ⊢  |
| | : , : , :  |
| 141 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 142 | instantiation | 159, 149, 148 | ⊢  |
| | : , : , :  |
| 143 | instantiation | 159, 149, 150 | ⊢  |
| | : , : , :  |
| 144 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 145 | instantiation | 159, 155, 151 | ⊢  |
| | : , : , :  |
| 146 | assumption | | ⊢  |
| 147 | instantiation | 159, 157, 152 | ⊢  |
| | : , : , :  |
| 148 | instantiation | 159, 153, 154 | ⊢  |
| | : , : , :  |
| 149 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 150 | instantiation | 159, 155, 156 | ⊢  |
| | : , : , :  |
| 151 | assumption | | ⊢  |
| 152 | assumption | | ⊢  |
| 153 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 154 | instantiation | 159, 157, 158 | ⊢  |
| | : , : , :  |
| 155 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 156 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 157 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 158 | instantiation | 159, 160, 161 | ⊢  |
| | : , : , :  |
| 159 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 160 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 161 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |