| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | , , , , ⊢ |
| : , : , : |
1 | reference | 105 | ⊢ |
2 | instantiation | 93, 130, 161, 5, 21, 6, 7, 23 | , , , , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 8, 9, 10, 11 | , , ⊢ |
| : , : , : , : |
4 | instantiation | 122, 12, 13 | , , , , ⊢ |
| : , : , : |
5 | instantiation | 144 | ⊢ |
| : , : |
6 | instantiation | 54, 76, 14 | , ⊢ |
| : , : |
7 | instantiation | 54, 76, 15 | , ⊢ |
| : , : |
8 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
9 | instantiation | 79, 16 | , ⊢ |
| : , : , : |
10 | instantiation | 79, 17 | , ⊢ |
| : , : , : |
11 | instantiation | 52, 18 | , , ⊢ |
| : , : |
12 | instantiation | 79, 19 | , , ⊢ |
| : , : , : |
13 | instantiation | 93, 130, 161, 133, 20, 134, 21, 22, 23, 24* | , , , , ⊢ |
| : , : , : , : , : , : |
14 | instantiation | 105, 25, 26 | , ⊢ |
| : , : , : |
15 | instantiation | 105, 27, 28 | , ⊢ |
| : , : , : |
16 | instantiation | 122, 29, 30 | , ⊢ |
| : , : , : |
17 | instantiation | 122, 31, 32 | , ⊢ |
| : , : , : |
18 | instantiation | 33, 34, 35, 126, 36, 37 | , , ⊢ |
| : , : , : |
19 | instantiation | 122, 38, 39 | , , ⊢ |
| : , : , : |
20 | instantiation | 144 | ⊢ |
| : , : |
21 | instantiation | 159, 149, 40 | , ⊢ |
| : , : , : |
22 | instantiation | 54, 76, 41 | , , ⊢ |
| : , : |
23 | instantiation | 54, 76, 42 | ⊢ |
| : , : |
24 | instantiation | 81, 117, 41, 42 | , , , ⊢ |
| : , : , : |
25 | instantiation | 141, 131, 43 | , ⊢ |
| : , : |
26 | instantiation | 122, 44, 45 | , ⊢ |
| : , : , : |
27 | instantiation | 141, 131, 46 | , ⊢ |
| : , : |
28 | instantiation | 122, 47, 48 | , ⊢ |
| : , : , : |
29 | instantiation | 79, 49 | , ⊢ |
| : , : , : |
30 | instantiation | 52, 50 | , ⊢ |
| : , : |
31 | instantiation | 79, 51 | , ⊢ |
| : , : , : |
32 | instantiation | 52, 53 | , ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_product |
34 | instantiation | 54, 76, 83 | ⊢ |
| : , : |
35 | instantiation | 54, 76, 84 | ⊢ |
| : , : |
36 | instantiation | 55, 56, 57 | ⊢ |
| : , : , : |
37 | instantiation | 75, 76, 84, 78 | ⊢ |
| : , : |
38 | instantiation | 79, 58 | , ⊢ |
| : , : , : |
39 | instantiation | 59, 117, 62, 110 | , , ⊢ |
| : , : , : |
40 | instantiation | 60, 61, 125 | , ⊢ |
| : , : |
41 | instantiation | 141, 62, 110 | , , ⊢ |
| : , : |
42 | instantiation | 105, 63, 64 | ⊢ |
| : , : , : |
43 | instantiation | 105, 65, 66 | , ⊢ |
| : , : , : |
44 | instantiation | 132, 130, 91, 133, 67, 134, 131, 137, 110, 129 | , ⊢ |
| : , : , : , : , : , : |
45 | instantiation | 132, 133, 161, 91, 134, 135, 67, 142, 143, 137, 110, 129 | , ⊢ |
| : , : , : , : , : , : |
46 | instantiation | 105, 68, 69 | , ⊢ |
| : , : , : |
47 | instantiation | 132, 130, 91, 133, 70, 134, 131, 137, 138, 110 | , ⊢ |
| : , : , : , : , : , : |
48 | instantiation | 132, 133, 161, 91, 134, 135, 70, 142, 143, 137, 138, 110 | , ⊢ |
| : , : , : , : , : , : |
49 | instantiation | 122, 71, 72 | , ⊢ |
| : , : , : |
50 | instantiation | 74, 76, 83, 78 | , ⊢ |
| : , : |
51 | instantiation | 93, 133, 94, 130, 134, 73, 142, 143, 137, 138, 110 | , ⊢ |
| : , : , : , : , : , : |
52 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
53 | instantiation | 74, 76, 84, 78 | , ⊢ |
| : , : |
54 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
55 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
56 | instantiation | 75, 76, 77, 78 | ⊢ |
| : , : |
57 | instantiation | 79, 80 | ⊢ |
| : , : , : |
58 | instantiation | 81, 117, 83, 84 | , ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_power_of_complex_power |
60 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
61 | assumption | | ⊢ |
62 | instantiation | 82, 83, 84 | , ⊢ |
| : , : |
63 | instantiation | 141, 131, 85 | ⊢ |
| : , : |
64 | instantiation | 122, 86, 87 | ⊢ |
| : , : , : |
65 | instantiation | 141, 88, 129 | , ⊢ |
| : , : |
66 | instantiation | 132, 133, 161, 130, 134, 89, 137, 110, 129 | , ⊢ |
| : , : , : , : , : , : |
67 | instantiation | 111 | ⊢ |
| : , : , : |
68 | instantiation | 141, 121, 110 | , ⊢ |
| : , : |
69 | instantiation | 132, 133, 161, 130, 134, 136, 137, 138, 110 | , ⊢ |
| : , : , : , : , : , : |
70 | instantiation | 111 | ⊢ |
| : , : , : |
71 | instantiation | 90, 91, 130, 133, 92, 134, 142, 143, 137, 110, 129 | , ⊢ |
| : , : , : , : , : , : , : |
72 | instantiation | 93, 133, 94, 130, 134, 95, 142, 143, 137, 129, 110 | , ⊢ |
| : , : , : , : , : , : |
73 | instantiation | 112 | ⊢ |
| : , : , : , : |
74 | instantiation | 96, 146 | ⊢ |
| : |
75 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_not_eq_zero |
76 | instantiation | 159, 149, 97 | ⊢ |
| : , : , : |
77 | instantiation | 105, 98, 99 | ⊢ |
| : , : , : |
78 | instantiation | 100, 101 | ⊢ |
| : |
79 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
80 | instantiation | 102, 161, 130, 133, 135, 134, 142, 143, 137, 129 | ⊢ |
| : , : , : , : , : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_complex_powers |
82 | theorem | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
83 | instantiation | 105, 103, 104 | ⊢ |
| : , : , : |
84 | instantiation | 105, 106, 107 | ⊢ |
| : , : , : |
85 | instantiation | 141, 137, 109 | ⊢ |
| : , : |
86 | instantiation | 132, 130, 161, 133, 108, 134, 131, 137, 109 | ⊢ |
| : , : , : , : , : , : |
87 | instantiation | 132, 133, 161, 134, 135, 108, 142, 143, 137, 109 | ⊢ |
| : , : , : , : , : , : |
88 | instantiation | 141, 137, 110 | ⊢ |
| : , : |
89 | instantiation | 144 | ⊢ |
| : , : |
90 | theorem | | ⊢ |
| proveit.numbers.multiplication.rightward_commutation |
91 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
92 | instantiation | 111 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
95 | instantiation | 112 | ⊢ |
| : , : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.exponentiation.int_exp_of_exp |
97 | instantiation | 159, 155, 117 | ⊢ |
| : , : , : |
98 | instantiation | 141, 131, 113 | ⊢ |
| : , : |
99 | instantiation | 122, 114, 115 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
101 | instantiation | 159, 116, 117 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
103 | instantiation | 141, 131, 118 | ⊢ |
| : , : |
104 | instantiation | 122, 119, 120 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
106 | instantiation | 141, 131, 121 | ⊢ |
| : , : |
107 | instantiation | 122, 123, 124 | ⊢ |
| : , : , : |
108 | instantiation | 144 | ⊢ |
| : , : |
109 | instantiation | 159, 149, 125 | ⊢ |
| : , : , : |
110 | instantiation | 159, 149, 126 | ⊢ |
| : , : , : |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
112 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
113 | instantiation | 141, 129, 137 | ⊢ |
| : , : |
114 | instantiation | 132, 130, 161, 133, 127, 134, 131, 129, 137 | ⊢ |
| : , : , : , : , : , : |
115 | instantiation | 132, 133, 161, 134, 135, 127, 142, 143, 129, 137 | ⊢ |
| : , : , : , : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
117 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
118 | instantiation | 141, 137, 129 | ⊢ |
| : , : |
119 | instantiation | 132, 130, 161, 133, 128, 134, 131, 137, 129 | ⊢ |
| : , : , : , : , : , : |
120 | instantiation | 132, 133, 161, 134, 135, 128, 142, 143, 137, 129 | ⊢ |
| : , : , : , : , : , : |
121 | instantiation | 141, 137, 138 | ⊢ |
| : , : |
122 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
123 | instantiation | 132, 130, 161, 133, 136, 134, 131, 137, 138 | ⊢ |
| : , : , : , : , : , : |
124 | instantiation | 132, 133, 161, 134, 135, 136, 142, 143, 137, 138 | ⊢ |
| : , : , : , : , : , : |
125 | assumption | | ⊢ |
126 | instantiation | 159, 153, 139 | ⊢ |
| : , : , : |
127 | instantiation | 144 | ⊢ |
| : , : |
128 | instantiation | 144 | ⊢ |
| : , : |
129 | instantiation | 159, 149, 140 | ⊢ |
| : , : , : |
130 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
131 | instantiation | 141, 142, 143 | ⊢ |
| : , : |
132 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
133 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
134 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
135 | instantiation | 144 | ⊢ |
| : , : |
136 | instantiation | 144 | ⊢ |
| : , : |
137 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
138 | instantiation | 159, 149, 145 | ⊢ |
| : , : , : |
139 | instantiation | 159, 157, 146 | ⊢ |
| : , : , : |
140 | instantiation | 159, 153, 147 | ⊢ |
| : , : , : |
141 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
142 | instantiation | 159, 149, 148 | ⊢ |
| : , : , : |
143 | instantiation | 159, 149, 150 | ⊢ |
| : , : , : |
144 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
145 | instantiation | 159, 155, 151 | ⊢ |
| : , : , : |
146 | assumption | | ⊢ |
147 | instantiation | 159, 157, 152 | ⊢ |
| : , : , : |
148 | instantiation | 159, 153, 154 | ⊢ |
| : , : , : |
149 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
150 | instantiation | 159, 155, 156 | ⊢ |
| : , : , : |
151 | assumption | | ⊢ |
152 | assumption | | ⊢ |
153 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
154 | instantiation | 159, 157, 158 | ⊢ |
| : , : , : |
155 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
156 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
157 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
158 | instantiation | 159, 160, 161 | ⊢ |
| : , : , : |
159 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
160 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
161 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |