| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , ⊢  |
| : , : , :  |
1 | reference | 49 | ⊢  |
2 | instantiation | 18, 4 | , , ⊢  |
| : , : , :  |
3 | instantiation | 5, 56, 85, 59, 6, 60, 7, 8, 9, 10* | , , , , ⊢  |
| : , : , : , : , : , :  |
4 | instantiation | 49, 11, 12 | , , ⊢  |
| : , : , :  |
5 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
6 | instantiation | 69 | ⊢  |
| : , :  |
7 | instantiation | 83, 73, 13 | , ⊢  |
| : , : , :  |
8 | instantiation | 14, 15, 16 | , , ⊢  |
| : , :  |
9 | instantiation | 14, 15, 17 | ⊢  |
| : , :  |
10 | instantiation | 28, 29, 16, 17 | , , , ⊢  |
| : , : , :  |
11 | instantiation | 18, 19 | , ⊢  |
| : , : , :  |
12 | instantiation | 20, 29, 24, 25 | , , ⊢  |
| : , : , :  |
13 | instantiation | 21, 22, 53 | , ⊢  |
| : , :  |
14 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
15 | instantiation | 83, 73, 23 | ⊢  |
| : , : , :  |
16 | instantiation | 66, 24, 25 | , , ⊢  |
| : , :  |
17 | instantiation | 39, 26, 27 | ⊢  |
| : , : , :  |
18 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
19 | instantiation | 28, 29, 31, 32 | , ⊢  |
| : , : , :  |
20 | theorem | | ⊢  |
| proveit.numbers.exponentiation.complex_power_of_complex_power |
21 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
22 | assumption | | ⊢  |
23 | instantiation | 83, 79, 29 | ⊢  |
| : , : , :  |
24 | instantiation | 30, 31, 32 | , ⊢  |
| : , :  |
25 | instantiation | 83, 73, 33 | ⊢  |
| : , : , :  |
26 | instantiation | 66, 57, 34 | ⊢  |
| : , :  |
27 | instantiation | 49, 35, 36 | ⊢  |
| : , : , :  |
28 | theorem | | ⊢  |
| proveit.numbers.exponentiation.product_of_complex_powers |
29 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
30 | theorem | | ⊢  |
| proveit.numbers.addition.add_complex_closure_bin |
31 | instantiation | 39, 37, 38 | ⊢  |
| : , : , :  |
32 | instantiation | 39, 40, 41 | ⊢  |
| : , : , :  |
33 | instantiation | 83, 77, 42 | ⊢  |
| : , : , :  |
34 | instantiation | 66, 63, 44 | ⊢  |
| : , :  |
35 | instantiation | 58, 56, 85, 59, 43, 60, 57, 63, 44 | ⊢  |
| : , : , : , : , : , :  |
36 | instantiation | 58, 59, 85, 60, 61, 43, 67, 68, 63, 44 | ⊢  |
| : , : , : , : , : , :  |
37 | instantiation | 66, 57, 45 | ⊢  |
| : , :  |
38 | instantiation | 49, 46, 47 | ⊢  |
| : , : , :  |
39 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
40 | instantiation | 66, 57, 48 | ⊢  |
| : , :  |
41 | instantiation | 49, 50, 51 | ⊢  |
| : , : , :  |
42 | instantiation | 83, 81, 52 | ⊢  |
| : , : , :  |
43 | instantiation | 69 | ⊢  |
| : , :  |
44 | instantiation | 83, 73, 53 | ⊢  |
| : , : , :  |
45 | instantiation | 66, 63, 55 | ⊢  |
| : , :  |
46 | instantiation | 58, 56, 85, 59, 54, 60, 57, 63, 55 | ⊢  |
| : , : , : , : , : , :  |
47 | instantiation | 58, 59, 85, 60, 61, 54, 67, 68, 63, 55 | ⊢  |
| : , : , : , : , : , :  |
48 | instantiation | 66, 63, 64 | ⊢  |
| : , :  |
49 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
50 | instantiation | 58, 56, 85, 59, 62, 60, 57, 63, 64 | ⊢  |
| : , : , : , : , : , :  |
51 | instantiation | 58, 59, 85, 60, 61, 62, 67, 68, 63, 64 | ⊢  |
| : , : , : , : , : , :  |
52 | assumption | | ⊢  |
53 | assumption | | ⊢  |
54 | instantiation | 69 | ⊢  |
| : , :  |
55 | instantiation | 83, 73, 65 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
57 | instantiation | 66, 67, 68 | ⊢  |
| : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
59 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
60 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
61 | instantiation | 69 | ⊢  |
| : , :  |
62 | instantiation | 69 | ⊢  |
| : , :  |
63 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
64 | instantiation | 83, 73, 70 | ⊢  |
| : , : , :  |
65 | instantiation | 83, 77, 71 | ⊢  |
| : , : , :  |
66 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
67 | instantiation | 83, 73, 72 | ⊢  |
| : , : , :  |
68 | instantiation | 83, 73, 74 | ⊢  |
| : , : , :  |
69 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
70 | instantiation | 83, 79, 75 | ⊢  |
| : , : , :  |
71 | instantiation | 83, 81, 76 | ⊢  |
| : , : , :  |
72 | instantiation | 83, 77, 78 | ⊢  |
| : , : , :  |
73 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
74 | instantiation | 83, 79, 80 | ⊢  |
| : , : , :  |
75 | assumption | | ⊢  |
76 | assumption | | ⊢  |
77 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
78 | instantiation | 83, 81, 82 | ⊢  |
| : , : , :  |
79 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
80 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
81 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
82 | instantiation | 83, 84, 85 | ⊢  |
| : , : , :  |
83 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
84 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
85 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |