| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , , ⊢  |
| | : , : , :  |
| 1 | reference | 49 | ⊢  |
| 2 | instantiation | 18, 4 | , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 5, 56, 85, 59, 6, 60, 7, 8, 9, 10* | , , , , ⊢  |
| | : , : , : , : , : , :  |
| 4 | instantiation | 49, 11, 12 | , , ⊢  |
| | : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 6 | instantiation | 69 | ⊢  |
| | : , :  |
| 7 | instantiation | 83, 73, 13 | , ⊢  |
| | : , : , :  |
| 8 | instantiation | 14, 15, 16 | , , ⊢  |
| | : , :  |
| 9 | instantiation | 14, 15, 17 | ⊢  |
| | : , :  |
| 10 | instantiation | 28, 29, 16, 17 | , , , ⊢  |
| | : , : , :  |
| 11 | instantiation | 18, 19 | , ⊢  |
| | : , : , :  |
| 12 | instantiation | 20, 29, 24, 25 | , , ⊢  |
| | : , : , :  |
| 13 | instantiation | 21, 22, 53 | , ⊢  |
| | : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 15 | instantiation | 83, 73, 23 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 66, 24, 25 | , , ⊢  |
| | : , :  |
| 17 | instantiation | 39, 26, 27 | ⊢  |
| | : , : , :  |
| 18 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 19 | instantiation | 28, 29, 31, 32 | , ⊢  |
| | : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_power_of_complex_power |
| 21 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 22 | assumption | | ⊢  |
| 23 | instantiation | 83, 79, 29 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 30, 31, 32 | , ⊢  |
| | : , :  |
| 25 | instantiation | 83, 73, 33 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 66, 57, 34 | ⊢  |
| | : , :  |
| 27 | instantiation | 49, 35, 36 | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_complex_powers |
| 29 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.e_is_real_pos |
| 30 | theorem | | ⊢  |
| | proveit.numbers.addition.add_complex_closure_bin |
| 31 | instantiation | 39, 37, 38 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 39, 40, 41 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 83, 77, 42 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 66, 63, 44 | ⊢  |
| | : , :  |
| 35 | instantiation | 58, 56, 85, 59, 43, 60, 57, 63, 44 | ⊢  |
| | : , : , : , : , : , :  |
| 36 | instantiation | 58, 59, 85, 60, 61, 43, 67, 68, 63, 44 | ⊢  |
| | : , : , : , : , : , :  |
| 37 | instantiation | 66, 57, 45 | ⊢  |
| | : , :  |
| 38 | instantiation | 49, 46, 47 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 40 | instantiation | 66, 57, 48 | ⊢  |
| | : , :  |
| 41 | instantiation | 49, 50, 51 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 83, 81, 52 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 69 | ⊢  |
| | : , :  |
| 44 | instantiation | 83, 73, 53 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 66, 63, 55 | ⊢  |
| | : , :  |
| 46 | instantiation | 58, 56, 85, 59, 54, 60, 57, 63, 55 | ⊢  |
| | : , : , : , : , : , :  |
| 47 | instantiation | 58, 59, 85, 60, 61, 54, 67, 68, 63, 55 | ⊢  |
| | : , : , : , : , : , :  |
| 48 | instantiation | 66, 63, 64 | ⊢  |
| | : , :  |
| 49 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 50 | instantiation | 58, 56, 85, 59, 62, 60, 57, 63, 64 | ⊢  |
| | : , : , : , : , : , :  |
| 51 | instantiation | 58, 59, 85, 60, 61, 62, 67, 68, 63, 64 | ⊢  |
| | : , : , : , : , : , :  |
| 52 | assumption | | ⊢  |
| 53 | assumption | | ⊢  |
| 54 | instantiation | 69 | ⊢  |
| | : , :  |
| 55 | instantiation | 83, 73, 65 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 57 | instantiation | 66, 67, 68 | ⊢  |
| | : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 59 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 60 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 61 | instantiation | 69 | ⊢  |
| | : , :  |
| 62 | instantiation | 69 | ⊢  |
| | : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.i_is_complex |
| 64 | instantiation | 83, 73, 70 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 83, 77, 71 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 67 | instantiation | 83, 73, 72 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 83, 73, 74 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 70 | instantiation | 83, 79, 75 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 83, 81, 76 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 83, 77, 78 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 74 | instantiation | 83, 79, 80 | ⊢  |
| | : , : , :  |
| 75 | assumption | | ⊢  |
| 76 | assumption | | ⊢  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 78 | instantiation | 83, 81, 82 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 80 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 82 | instantiation | 83, 84, 85 | ⊢  |
| | : , : , :  |
| 83 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |