| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , ⊢ |
| : , : , : , : |
1 | reference | 29 | ⊢ |
2 | instantiation | 151, 5, 6 | , , , ⊢ |
| : , : , : |
3 | instantiation | 151, 7, 8 | , , , ⊢ |
| : , : , : |
4 | instantiation | 9, 10 | , , , ⊢ |
| : , : |
5 | instantiation | 36, 11 | , , , ⊢ |
| : , : , : |
6 | instantiation | 12, 13, 44, 14, 15* | , , , ⊢ |
| : , : |
7 | instantiation | 86, 193, 188, 16, 94, 95, 44, 104, 97 | , , , ⊢ |
| : , : , : , : , : , : , : |
8 | instantiation | 86, 188, 193, 17, 94, 104, 95, 44, 97 | , , , ⊢ |
| : , : , : , : , : , : , : |
9 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
10 | instantiation | 151, 18, 19 | , , , ⊢ |
| : , : , : |
11 | instantiation | 151, 20, 21 | , , , ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
13 | instantiation | 55, 22, 23 | , , , ⊢ |
| : , : , : |
14 | instantiation | 24, 132, 127, 116 | ⊢ |
| : , : |
15 | instantiation | 151, 25, 26 | , , , ⊢ |
| : , : , : |
16 | instantiation | 174 | ⊢ |
| : , : |
17 | instantiation | 174 | ⊢ |
| : , : |
18 | instantiation | 151, 27, 28 | , , , ⊢ |
| : , : , : |
19 | instantiation | 86, 87, 188, 89, 41, 43, 104, 44, 94, 95, 97 | , , , ⊢ |
| : , : , : , : , : , : , : |
20 | instantiation | 29, 30, 31, 32 | , , , ⊢ |
| : , : , : , : |
21 | instantiation | 86, 87, 188, 89, 52, 93, 95, 132, 94, 104, 97 | , , , ⊢ |
| : , : , : , : , : , : , : |
22 | instantiation | 103, 58, 33 | , , , ⊢ |
| : , : |
23 | instantiation | 151, 34, 35 | , , , ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_not_eq_zero |
25 | instantiation | 36, 37 | ⊢ |
| : , : , : |
26 | instantiation | 151, 38, 39 | , , , ⊢ |
| : , : , : |
27 | instantiation | 86, 171, 193, 40, 104, 44, 176, 95, 45, 97 | , , , ⊢ |
| : , : , : , : , : , : , : |
28 | instantiation | 90, 188, 41, 42, 43, 104, 44, 176, 45, 95, 97, 46* | , , , ⊢ |
| : , : , : , : , : , : |
29 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
30 | instantiation | 151, 47, 48 | , , , ⊢ |
| : , : , : |
31 | instantiation | 90, 87, 188, 63, 89, 49, 50, 110, 132, 107, 72, 104, 97, 51* | , , , ⊢ |
| : , : , : , : , : , : |
32 | instantiation | 90, 188, 52, 53, 93, 95, 132, 107, 72, 104, 97, 54* | , , , ⊢ |
| : , : , : , : , : , : |
33 | instantiation | 55, 56, 57 | , , ⊢ |
| : , : , : |
34 | instantiation | 82, 193, 171, 87, 59, 89, 58, 132, 104, 97 | , , , ⊢ |
| : , : , : , : , : , : |
35 | instantiation | 82, 87, 188, 171, 89, 91, 59, 94, 95, 132, 104, 97 | , , , ⊢ |
| : , : , : , : , : , : |
36 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
37 | instantiation | 60, 132, 145, 61, 116, 62* | ⊢ |
| : , : , : |
38 | instantiation | 82, 87, 63, 193, 89, 64, 94, 95, 132, 104, 97, 96 | , , , ⊢ |
| : , : , : , : , : , : |
39 | instantiation | 151, 65, 66 | , , , ⊢ |
| : , : , : |
40 | instantiation | 105 | ⊢ |
| : , : , : |
41 | instantiation | 174 | ⊢ |
| : , : |
42 | instantiation | 174 | ⊢ |
| : , : |
43 | instantiation | 174 | ⊢ |
| : , : |
44 | instantiation | 67, 132 | ⊢ |
| : |
45 | instantiation | 106, 176, 108, 109 | ⊢ |
| : , : |
46 | instantiation | 75, 176, 76, 77, 68*, 69*, 80* | ⊢ |
| : , : , : , : |
47 | instantiation | 86, 193, 170, 70, 110, 132, 107, 104, 72, 97 | , , , ⊢ |
| : , : , : , : , : , : , : |
48 | instantiation | 86, 170, 193, 71, 110, 132, 107, 104, 72, 97 | , , , ⊢ |
| : , : , : , : , : , : , : |
49 | instantiation | 174 | ⊢ |
| : , : |
50 | instantiation | 85 | ⊢ |
| : , : , : , : , : |
51 | instantiation | 73, 110, 154, 74*, 169* | ⊢ |
| : , : , : |
52 | instantiation | 174 | ⊢ |
| : , : |
53 | instantiation | 174 | ⊢ |
| : , : |
54 | instantiation | 75, 107, 181, 76, 77, 78*, 79*, 80* | ⊢ |
| : , : , : , : |
55 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
56 | instantiation | 103, 81, 97 | , , ⊢ |
| : , : |
57 | instantiation | 82, 87, 188, 193, 89, 83, 132, 104, 97 | , , ⊢ |
| : , : , : , : , : , : |
58 | instantiation | 103, 94, 95 | ⊢ |
| : , : |
59 | instantiation | 105 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_real_power |
61 | instantiation | 128, 184 | ⊢ |
| : |
62 | instantiation | 177, 127, 181, 84* | ⊢ |
| : , : |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
64 | instantiation | 85 | ⊢ |
| : , : , : , : , : |
65 | instantiation | 86, 171, 188, 87, 88, 93, 89, 94, 95, 132, 104, 97, 96 | , , , ⊢ |
| : , : , : , : , : , : , : |
66 | instantiation | 90, 188, 91, 92, 93, 94, 95, 132, 96, 104, 97, 98* | , , , ⊢ |
| : , : , : , : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.exponentiation.sqrt_complex_closure |
68 | instantiation | 149, 176 | ⊢ |
| : |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
70 | instantiation | 99 | ⊢ |
| : , : , : , : |
71 | instantiation | 99 | ⊢ |
| : , : , : , : |
72 | instantiation | 106, 181, 108, 109 | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
74 | instantiation | 131, 110 | ⊢ |
| : |
75 | theorem | | ⊢ |
| proveit.numbers.division.prod_of_fracs |
76 | instantiation | 191, 101, 100 | ⊢ |
| : , : , : |
77 | instantiation | 191, 101, 102 | ⊢ |
| : , : , : |
78 | instantiation | 149, 107 | ⊢ |
| : |
79 | instantiation | 180, 107 | ⊢ |
| : |
80 | instantiation | 175, 108 | ⊢ |
| : |
81 | instantiation | 103, 132, 104 | , ⊢ |
| : , : |
82 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
83 | instantiation | 174 | ⊢ |
| : , : |
84 | instantiation | 180, 127 | ⊢ |
| : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
86 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
87 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
88 | instantiation | 105 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
90 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
91 | instantiation | 174 | ⊢ |
| : , : |
92 | instantiation | 174 | ⊢ |
| : , : |
93 | instantiation | 174 | ⊢ |
| : , : |
94 | instantiation | 106, 107, 108, 109 | ⊢ |
| : , : |
95 | instantiation | 111, 110, 176 | ⊢ |
| : , : |
96 | instantiation | 111, 132, 112 | ⊢ |
| : , : |
97 | instantiation | 191, 183, 113 | ⊢ |
| : , : , : |
98 | instantiation | 114, 132, 184, 115, 116, 117*, 118* | ⊢ |
| : , : , : |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
100 | instantiation | 191, 120, 119 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
102 | instantiation | 191, 120, 121 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
104 | instantiation | 191, 183, 122 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
106 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
107 | instantiation | 191, 183, 123 | ⊢ |
| : , : , : |
108 | instantiation | 191, 183, 124 | ⊢ |
| : , : , : |
109 | instantiation | 172, 156 | ⊢ |
| : |
110 | instantiation | 191, 183, 125 | ⊢ |
| : , : , : |
111 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
112 | instantiation | 126, 127 | ⊢ |
| : |
113 | assumption | | ⊢ |
114 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_real_powers |
115 | instantiation | 128, 145 | ⊢ |
| : |
116 | instantiation | 129, 130 | ⊢ |
| : |
117 | instantiation | 131, 132 | ⊢ |
| : |
118 | instantiation | 133, 190, 134, 185, 135*, 136*, 137* | ⊢ |
| : , : , : , : |
119 | instantiation | 191, 139, 138 | ⊢ |
| : , : , : |
120 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
121 | instantiation | 191, 139, 140 | ⊢ |
| : , : , : |
122 | instantiation | 191, 161, 141 | ⊢ |
| : , : , : |
123 | instantiation | 191, 186, 142 | ⊢ |
| : , : , : |
124 | instantiation | 191, 186, 143 | ⊢ |
| : , : , : |
125 | instantiation | 191, 161, 144 | ⊢ |
| : , : , : |
126 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
127 | instantiation | 191, 183, 145 | ⊢ |
| : , : , : |
128 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
129 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
130 | instantiation | 191, 146, 162 | ⊢ |
| : , : , : |
131 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
132 | instantiation | 191, 183, 147 | ⊢ |
| : , : , : |
133 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
134 | instantiation | 148, 190 | ⊢ |
| : |
135 | instantiation | 149, 181 | ⊢ |
| : |
136 | instantiation | 150, 181, 176, 160 | ⊢ |
| : , : |
137 | instantiation | 151, 152, 153 | ⊢ |
| : , : , : |
138 | instantiation | 191, 155, 154 | ⊢ |
| : , : , : |
139 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
140 | instantiation | 191, 155, 156 | ⊢ |
| : , : , : |
141 | assumption | | ⊢ |
142 | instantiation | 191, 189, 157 | ⊢ |
| : , : , : |
143 | instantiation | 191, 189, 158 | ⊢ |
| : , : , : |
144 | assumption | | ⊢ |
145 | instantiation | 159, 184, 179, 160 | ⊢ |
| : , : |
146 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
147 | instantiation | 191, 161, 162 | ⊢ |
| : , : , : |
148 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
149 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
150 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
151 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
152 | instantiation | 163, 188, 164, 165, 166, 167 | ⊢ |
| : , : , : , : |
153 | instantiation | 168, 181, 176, 169 | ⊢ |
| : , : , : |
154 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
155 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
156 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
157 | instantiation | 191, 192, 170 | ⊢ |
| : , : , : |
158 | instantiation | 191, 192, 171 | ⊢ |
| : , : , : |
159 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
160 | instantiation | 172, 173 | ⊢ |
| : |
161 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
162 | assumption | | ⊢ |
163 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
164 | instantiation | 174 | ⊢ |
| : , : |
165 | instantiation | 174 | ⊢ |
| : , : |
166 | instantiation | 175, 176 | ⊢ |
| : |
167 | instantiation | 177, 181, 178* | ⊢ |
| : , : |
168 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
169 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
170 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
171 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
172 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
173 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
174 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
175 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
176 | instantiation | 191, 183, 179 | ⊢ |
| : , : , : |
177 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
178 | instantiation | 180, 181 | ⊢ |
| : |
179 | instantiation | 191, 186, 182 | ⊢ |
| : , : , : |
180 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
181 | instantiation | 191, 183, 184 | ⊢ |
| : , : , : |
182 | instantiation | 191, 189, 185 | ⊢ |
| : , : , : |
183 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
184 | instantiation | 191, 186, 187 | ⊢ |
| : , : , : |
185 | instantiation | 191, 192, 188 | ⊢ |
| : , : , : |
186 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
187 | instantiation | 191, 189, 190 | ⊢ |
| : , : , : |
188 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
189 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
190 | instantiation | 191, 192, 193 | ⊢ |
| : , : , : |
191 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
192 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
193 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |