| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 9 | ⊢ |
2 | instantiation | 4, 5, 6, 7 | , , , ⊢ |
| : , : , : , : |
3 | instantiation | 25, 12, 85, 14, 19, 21, 22, 27, 8, 28, 30 | , , , ⊢ |
| : , : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
5 | instantiation | 9, 10, 11 | , , , ⊢ |
| : , : , : |
6 | instantiation | 18, 12, 85, 13, 14, 15, 16, 52, 27, 59, 29, 28, 30, 17* | , , , ⊢ |
| : , : , : , : , : , : |
7 | instantiation | 18, 85, 19, 20, 21, 22, 27, 59, 29, 28, 30, 23* | , , , ⊢ |
| : , : , : , : , : , : |
8 | instantiation | 47, 59, 61, 49 | ⊢ |
| : , : |
9 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
10 | instantiation | 25, 92, 93, 24, 52, 27, 59, 28, 29, 30 | , , , ⊢ |
| : , : , : , : , : , : , : |
11 | instantiation | 25, 93, 92, 26, 52, 27, 59, 28, 29, 30 | , , , ⊢ |
| : , : , : , : , : , : , : |
12 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
13 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
14 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
15 | instantiation | 35 | ⊢ |
| : , : |
16 | instantiation | 31 | ⊢ |
| : , : , : , : , : |
17 | instantiation | 32, 52, 86, 33*, 34* | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
19 | instantiation | 35 | ⊢ |
| : , : |
20 | instantiation | 35 | ⊢ |
| : , : |
21 | instantiation | 35 | ⊢ |
| : , : |
22 | instantiation | 36, 52, 37 | ⊢ |
| : , : |
23 | instantiation | 38, 59, 48, 39, 40, 41*, 42*, 43* | ⊢ |
| : , : , : , : |
24 | instantiation | 44 | ⊢ |
| : , : , : , : |
25 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
26 | instantiation | 44 | ⊢ |
| : , : , : , : |
27 | instantiation | 94, 72, 45 | ⊢ |
| : , : , : |
28 | instantiation | 94, 72, 46 | ⊢ |
| : , : , : |
29 | instantiation | 47, 48, 61, 49 | ⊢ |
| : , : |
30 | instantiation | 94, 72, 50 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
32 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
33 | instantiation | 51, 52 | ⊢ |
| : |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
36 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
37 | instantiation | 94, 72, 53 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.numbers.division.prod_of_fracs |
39 | instantiation | 94, 55, 54 | ⊢ |
| : , : , : |
40 | instantiation | 94, 55, 56 | ⊢ |
| : , : , : |
41 | instantiation | 57, 59 | ⊢ |
| : |
42 | instantiation | 58, 59 | ⊢ |
| : |
43 | instantiation | 60, 61 | ⊢ |
| : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
45 | instantiation | 94, 75, 62 | ⊢ |
| : , : , : |
46 | instantiation | 94, 75, 63 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
48 | instantiation | 94, 72, 64 | ⊢ |
| : , : , : |
49 | instantiation | 65, 88 | ⊢ |
| : |
50 | assumption | | ⊢ |
51 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
52 | instantiation | 94, 72, 66 | ⊢ |
| : , : , : |
53 | instantiation | 94, 82, 67 | ⊢ |
| : , : , : |
54 | instantiation | 94, 69, 68 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
56 | instantiation | 94, 69, 70 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
58 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
59 | instantiation | 94, 72, 71 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
61 | instantiation | 94, 72, 73 | ⊢ |
| : , : , : |
62 | assumption | | ⊢ |
63 | assumption | | ⊢ |
64 | instantiation | 94, 82, 74 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
66 | instantiation | 94, 75, 76 | ⊢ |
| : , : , : |
67 | instantiation | 94, 90, 77 | ⊢ |
| : , : , : |
68 | instantiation | 94, 79, 78 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
70 | instantiation | 94, 79, 80 | ⊢ |
| : , : , : |
71 | instantiation | 94, 82, 81 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
73 | instantiation | 94, 82, 83 | ⊢ |
| : , : , : |
74 | instantiation | 94, 90, 84 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
76 | assumption | | ⊢ |
77 | instantiation | 94, 95, 85 | ⊢ |
| : , : , : |
78 | instantiation | 94, 87, 86 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
80 | instantiation | 94, 87, 88 | ⊢ |
| : , : , : |
81 | instantiation | 94, 90, 89 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
83 | instantiation | 94, 90, 91 | ⊢ |
| : , : , : |
84 | instantiation | 94, 95, 92 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
88 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
89 | instantiation | 94, 95, 93 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
91 | instantiation | 94, 95, 96 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
94 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
96 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |