logo

Expression of type Equals

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import a, b, c, d
from proveit.logic import Equals
from proveit.numbers import Exp, Mult, Neg, four, frac, one, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = frac(four, three)
sub_expr2 = Exp(d, two)
sub_expr3 = Exp(b, Neg(frac(one, two)))
expr = Equals(Mult(sub_expr1, sub_expr2, b, a, c, sub_expr3), Mult(sub_expr1, sub_expr2, b, sub_expr3, a, c)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\frac{4}{3} \cdot d^{2} \cdot b \cdot a \cdot c \cdot b^{-\frac{1}{2}}\right) =  \\ \left(\frac{4}{3} \cdot d^{2} \cdot b \cdot b^{-\frac{1}{2}} \cdot a \cdot c\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9, 20, 11, 12, 10
6Literal
7ExprTuple8, 9, 20, 10, 11, 12
8Operationoperator: 25
operands: 13
9Operationoperator: 15
operands: 14
10Operationoperator: 15
operands: 16
11Variable
12Variable
13ExprTuple17, 18
14ExprTuple19, 28
15Literal
16ExprTuple20, 21
17Literal
18Literal
19Variable
20Variable
21Operationoperator: 22
operand: 24
22Literal
23ExprTuple24
24Operationoperator: 25
operands: 26
25Literal
26ExprTuple27, 28
27Literal
28Literal