| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 65 | ⊢ |
2 | instantiation | 4, 11, 5, 104, 13, 6, 18, 19, 50, 21, 22, 20 | , , , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 65, 7, 8 | , , , ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
5 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
6 | instantiation | 9 | ⊢ |
| : , : , : , : , : |
7 | instantiation | 10, 82, 99, 11, 12, 17, 13, 18, 19, 50, 21, 22, 20 | , , , ⊢ |
| : , : , : , : , : , : , : |
8 | instantiation | 14, 99, 15, 16, 17, 18, 19, 50, 20, 21, 22, 23* | , , , ⊢ |
| : , : , : , : , : , : |
9 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
10 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
11 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
12 | instantiation | 24 | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
14 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
15 | instantiation | 85 | ⊢ |
| : , : |
16 | instantiation | 85 | ⊢ |
| : , : |
17 | instantiation | 85 | ⊢ |
| : , : |
18 | instantiation | 25, 26, 27, 28 | ⊢ |
| : , : |
19 | instantiation | 30, 29, 87 | ⊢ |
| : , : |
20 | instantiation | 30, 50, 31 | ⊢ |
| : , : |
21 | instantiation | 102, 94, 32 | ⊢ |
| : , : , : |
22 | instantiation | 102, 94, 33 | ⊢ |
| : , : , : |
23 | instantiation | 34, 50, 95, 35, 36, 37*, 38* | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
25 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
26 | instantiation | 102, 94, 39 | ⊢ |
| : , : , : |
27 | instantiation | 102, 94, 40 | ⊢ |
| : , : , : |
28 | instantiation | 83, 41 | ⊢ |
| : |
29 | instantiation | 102, 94, 42 | ⊢ |
| : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
31 | instantiation | 43, 44 | ⊢ |
| : |
32 | instantiation | 102, 72, 45 | ⊢ |
| : , : , : |
33 | assumption | | ⊢ |
34 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_real_powers |
35 | instantiation | 46, 59 | ⊢ |
| : |
36 | instantiation | 47, 48 | ⊢ |
| : |
37 | instantiation | 49, 50 | ⊢ |
| : |
38 | instantiation | 51, 101, 52, 96, 53*, 54*, 55* | ⊢ |
| : , : , : , : |
39 | instantiation | 102, 97, 56 | ⊢ |
| : , : , : |
40 | instantiation | 102, 97, 57 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
42 | instantiation | 102, 72, 58 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
44 | instantiation | 102, 94, 59 | ⊢ |
| : , : , : |
45 | assumption | | ⊢ |
46 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
47 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
48 | instantiation | 102, 60, 73 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
50 | instantiation | 102, 94, 61 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
52 | instantiation | 62, 101 | ⊢ |
| : |
53 | instantiation | 63, 92 | ⊢ |
| : |
54 | instantiation | 64, 92, 87, 71 | ⊢ |
| : , : |
55 | instantiation | 65, 66, 67 | ⊢ |
| : , : , : |
56 | instantiation | 102, 100, 68 | ⊢ |
| : , : , : |
57 | instantiation | 102, 100, 69 | ⊢ |
| : , : , : |
58 | assumption | | ⊢ |
59 | instantiation | 70, 95, 90, 71 | ⊢ |
| : , : |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
61 | instantiation | 102, 72, 73 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
63 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
64 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
65 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
66 | instantiation | 74, 99, 75, 76, 77, 78 | ⊢ |
| : , : , : , : |
67 | instantiation | 79, 92, 87, 80 | ⊢ |
| : , : , : |
68 | instantiation | 102, 103, 81 | ⊢ |
| : , : , : |
69 | instantiation | 102, 103, 82 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
71 | instantiation | 83, 84 | ⊢ |
| : |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
73 | assumption | | ⊢ |
74 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
75 | instantiation | 85 | ⊢ |
| : , : |
76 | instantiation | 85 | ⊢ |
| : , : |
77 | instantiation | 86, 87 | ⊢ |
| : |
78 | instantiation | 88, 92, 89* | ⊢ |
| : , : |
79 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
81 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
82 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
86 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
87 | instantiation | 102, 94, 90 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
89 | instantiation | 91, 92 | ⊢ |
| : |
90 | instantiation | 102, 97, 93 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
92 | instantiation | 102, 94, 95 | ⊢ |
| : , : , : |
93 | instantiation | 102, 100, 96 | ⊢ |
| : , : , : |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
95 | instantiation | 102, 97, 98 | ⊢ |
| : , : , : |
96 | instantiation | 102, 103, 99 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
98 | instantiation | 102, 100, 101 | ⊢ |
| : , : , : |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
101 | instantiation | 102, 103, 104 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |