| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5* | , , , ⊢  |
| | : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 2 | instantiation | 19, 6, 7 | , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 8, 76 | ⊢  |
| | :  |
| 4 | instantiation | 9, 76, 71, 62 | ⊢  |
| | : , :  |
| 5 | instantiation | 92, 10, 11 | , , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 49, 22, 12 | , , , ⊢  |
| | : , :  |
| 7 | instantiation | 92, 13, 14 | , , , ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.sqrt_complex_closure |
| 9 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_not_eq_zero |
| 10 | instantiation | 15, 16 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 92, 17, 18 | , , , ⊢  |
| | : , : , :  |
| 12 | instantiation | 19, 20, 21 | , , ⊢  |
| | : , : , :  |
| 13 | instantiation | 32, 131, 109, 37, 23, 39, 22, 76, 50, 47 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 14 | instantiation | 32, 37, 126, 109, 39, 41, 23, 44, 45, 76, 50, 47 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 15 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 16 | instantiation | 24, 76, 86, 25, 62, 26* | ⊢  |
| | : , : , :  |
| 17 | instantiation | 32, 37, 27, 131, 39, 28, 44, 45, 76, 50, 47, 46 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 18 | instantiation | 92, 29, 30 | , , , ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 20 | instantiation | 49, 31, 47 | , , ⊢  |
| | : , :  |
| 21 | instantiation | 32, 37, 126, 131, 39, 33, 76, 50, 47 | , , ⊢  |
| | : , : , : , : , : , :  |
| 22 | instantiation | 49, 44, 45 | ⊢  |
| | : , :  |
| 23 | instantiation | 51 | ⊢  |
| | : , : , :  |
| 24 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.real_power_of_real_power |
| 25 | instantiation | 72, 122 | ⊢  |
| | :  |
| 26 | instantiation | 115, 71, 119, 34* | ⊢  |
| | : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 28 | instantiation | 35 | ⊢  |
| | : , : , : , : , :  |
| 29 | instantiation | 36, 109, 126, 37, 38, 43, 39, 44, 45, 76, 50, 47, 46 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 30 | instantiation | 40, 126, 41, 42, 43, 44, 45, 76, 46, 50, 47, 48* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 31 | instantiation | 49, 76, 50 | , ⊢  |
| | : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 33 | instantiation | 112 | ⊢  |
| | : , :  |
| 34 | instantiation | 118, 71 | ⊢  |
| | :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 36 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 37 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 38 | instantiation | 51 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 40 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 41 | instantiation | 112 | ⊢  |
| | : , :  |
| 42 | instantiation | 112 | ⊢  |
| | : , :  |
| 43 | instantiation | 112 | ⊢  |
| | : , :  |
| 44 | instantiation | 52, 53, 54, 55 | ⊢  |
| | : , :  |
| 45 | instantiation | 57, 56, 114 | ⊢  |
| | : , :  |
| 46 | instantiation | 57, 76, 58 | ⊢  |
| | : , :  |
| 47 | instantiation | 129, 121, 59 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 60, 76, 122, 61, 62, 63*, 64* | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 50 | instantiation | 129, 121, 65 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 52 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 53 | instantiation | 129, 121, 66 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 129, 121, 67 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 110, 68 | ⊢  |
| | :  |
| 56 | instantiation | 129, 121, 69 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 58 | instantiation | 70, 71 | ⊢  |
| | :  |
| 59 | assumption | | ⊢  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_real_powers |
| 61 | instantiation | 72, 86 | ⊢  |
| | :  |
| 62 | instantiation | 73, 74 | ⊢  |
| | :  |
| 63 | instantiation | 75, 76 | ⊢  |
| | :  |
| 64 | instantiation | 77, 128, 78, 123, 79*, 80*, 81* | ⊢  |
| | : , : , : , :  |
| 65 | instantiation | 129, 99, 82 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 129, 124, 83 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 129, 124, 84 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 69 | instantiation | 129, 99, 85 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 71 | instantiation | 129, 121, 86 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 73 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
| 74 | instantiation | 129, 87, 100 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 76 | instantiation | 129, 121, 88 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 78 | instantiation | 89, 128 | ⊢  |
| | :  |
| 79 | instantiation | 90, 119 | ⊢  |
| | :  |
| 80 | instantiation | 91, 119, 114, 98 | ⊢  |
| | : , :  |
| 81 | instantiation | 92, 93, 94 | ⊢  |
| | : , : , :  |
| 82 | assumption | | ⊢  |
| 83 | instantiation | 129, 127, 95 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 129, 127, 96 | ⊢  |
| | : , : , :  |
| 85 | assumption | | ⊢  |
| 86 | instantiation | 97, 122, 117, 98 | ⊢  |
| | : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
| 88 | instantiation | 129, 99, 100 | ⊢  |
| | : , : , :  |
| 89 | theorem | | ⊢  |
| | proveit.numbers.negation.int_closure |
| 90 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 91 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 92 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 93 | instantiation | 101, 126, 102, 103, 104, 105 | ⊢  |
| | : , : , : , :  |
| 94 | instantiation | 106, 119, 114, 107 | ⊢  |
| | : , : , :  |
| 95 | instantiation | 129, 130, 108 | ⊢  |
| | : , : , :  |
| 96 | instantiation | 129, 130, 109 | ⊢  |
| | : , : , :  |
| 97 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 98 | instantiation | 110, 111 | ⊢  |
| | :  |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real |
| 100 | assumption | | ⊢  |
| 101 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 102 | instantiation | 112 | ⊢  |
| | : , :  |
| 103 | instantiation | 112 | ⊢  |
| | : , :  |
| 104 | instantiation | 113, 114 | ⊢  |
| | :  |
| 105 | instantiation | 115, 119, 116* | ⊢  |
| | : , :  |
| 106 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 107 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 108 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 109 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 110 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 111 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 112 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 113 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 114 | instantiation | 129, 121, 117 | ⊢  |
| | : , : , :  |
| 115 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_neg_right |
| 116 | instantiation | 118, 119 | ⊢  |
| | :  |
| 117 | instantiation | 129, 124, 120 | ⊢  |
| | : , : , :  |
| 118 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 119 | instantiation | 129, 121, 122 | ⊢  |
| | : , : , :  |
| 120 | instantiation | 129, 127, 123 | ⊢  |
| | : , : , :  |
| 121 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 122 | instantiation | 129, 124, 125 | ⊢  |
| | : , : , :  |
| 123 | instantiation | 129, 130, 126 | ⊢  |
| | : , : , :  |
| 124 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 125 | instantiation | 129, 127, 128 | ⊢  |
| | : , : , :  |
| 126 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 127 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 128 | instantiation | 129, 130, 131 | ⊢  |
| | : , : , :  |
| 129 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 130 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 131 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |