| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5* | , , , ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
2 | instantiation | 19, 6, 7 | , , , ⊢ |
| : , : , : |
3 | instantiation | 8, 76 | ⊢ |
| : |
4 | instantiation | 9, 76, 71, 62 | ⊢ |
| : , : |
5 | instantiation | 92, 10, 11 | , , , ⊢ |
| : , : , : |
6 | instantiation | 49, 22, 12 | , , , ⊢ |
| : , : |
7 | instantiation | 92, 13, 14 | , , , ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.exponentiation.sqrt_complex_closure |
9 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_not_eq_zero |
10 | instantiation | 15, 16 | ⊢ |
| : , : , : |
11 | instantiation | 92, 17, 18 | , , , ⊢ |
| : , : , : |
12 | instantiation | 19, 20, 21 | , , ⊢ |
| : , : , : |
13 | instantiation | 32, 131, 109, 37, 23, 39, 22, 76, 50, 47 | , , , ⊢ |
| : , : , : , : , : , : |
14 | instantiation | 32, 37, 126, 109, 39, 41, 23, 44, 45, 76, 50, 47 | , , , ⊢ |
| : , : , : , : , : , : |
15 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
16 | instantiation | 24, 76, 86, 25, 62, 26* | ⊢ |
| : , : , : |
17 | instantiation | 32, 37, 27, 131, 39, 28, 44, 45, 76, 50, 47, 46 | , , , ⊢ |
| : , : , : , : , : , : |
18 | instantiation | 92, 29, 30 | , , , ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
20 | instantiation | 49, 31, 47 | , , ⊢ |
| : , : |
21 | instantiation | 32, 37, 126, 131, 39, 33, 76, 50, 47 | , , ⊢ |
| : , : , : , : , : , : |
22 | instantiation | 49, 44, 45 | ⊢ |
| : , : |
23 | instantiation | 51 | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_real_power |
25 | instantiation | 72, 122 | ⊢ |
| : |
26 | instantiation | 115, 71, 119, 34* | ⊢ |
| : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
28 | instantiation | 35 | ⊢ |
| : , : , : , : , : |
29 | instantiation | 36, 109, 126, 37, 38, 43, 39, 44, 45, 76, 50, 47, 46 | , , , ⊢ |
| : , : , : , : , : , : , : |
30 | instantiation | 40, 126, 41, 42, 43, 44, 45, 76, 46, 50, 47, 48* | , , , ⊢ |
| : , : , : , : , : , : |
31 | instantiation | 49, 76, 50 | , ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
33 | instantiation | 112 | ⊢ |
| : , : |
34 | instantiation | 118, 71 | ⊢ |
| : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
36 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
37 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
38 | instantiation | 51 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
40 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
41 | instantiation | 112 | ⊢ |
| : , : |
42 | instantiation | 112 | ⊢ |
| : , : |
43 | instantiation | 112 | ⊢ |
| : , : |
44 | instantiation | 52, 53, 54, 55 | ⊢ |
| : , : |
45 | instantiation | 57, 56, 114 | ⊢ |
| : , : |
46 | instantiation | 57, 76, 58 | ⊢ |
| : , : |
47 | instantiation | 129, 121, 59 | ⊢ |
| : , : , : |
48 | instantiation | 60, 76, 122, 61, 62, 63*, 64* | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
50 | instantiation | 129, 121, 65 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
52 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
53 | instantiation | 129, 121, 66 | ⊢ |
| : , : , : |
54 | instantiation | 129, 121, 67 | ⊢ |
| : , : , : |
55 | instantiation | 110, 68 | ⊢ |
| : |
56 | instantiation | 129, 121, 69 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
58 | instantiation | 70, 71 | ⊢ |
| : |
59 | assumption | | ⊢ |
60 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_real_powers |
61 | instantiation | 72, 86 | ⊢ |
| : |
62 | instantiation | 73, 74 | ⊢ |
| : |
63 | instantiation | 75, 76 | ⊢ |
| : |
64 | instantiation | 77, 128, 78, 123, 79*, 80*, 81* | ⊢ |
| : , : , : , : |
65 | instantiation | 129, 99, 82 | ⊢ |
| : , : , : |
66 | instantiation | 129, 124, 83 | ⊢ |
| : , : , : |
67 | instantiation | 129, 124, 84 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
69 | instantiation | 129, 99, 85 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
71 | instantiation | 129, 121, 86 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
73 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
74 | instantiation | 129, 87, 100 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
76 | instantiation | 129, 121, 88 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
78 | instantiation | 89, 128 | ⊢ |
| : |
79 | instantiation | 90, 119 | ⊢ |
| : |
80 | instantiation | 91, 119, 114, 98 | ⊢ |
| : , : |
81 | instantiation | 92, 93, 94 | ⊢ |
| : , : , : |
82 | assumption | | ⊢ |
83 | instantiation | 129, 127, 95 | ⊢ |
| : , : , : |
84 | instantiation | 129, 127, 96 | ⊢ |
| : , : , : |
85 | assumption | | ⊢ |
86 | instantiation | 97, 122, 117, 98 | ⊢ |
| : , : |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
88 | instantiation | 129, 99, 100 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
90 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
91 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
92 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
93 | instantiation | 101, 126, 102, 103, 104, 105 | ⊢ |
| : , : , : , : |
94 | instantiation | 106, 119, 114, 107 | ⊢ |
| : , : , : |
95 | instantiation | 129, 130, 108 | ⊢ |
| : , : , : |
96 | instantiation | 129, 130, 109 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
98 | instantiation | 110, 111 | ⊢ |
| : |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
100 | assumption | | ⊢ |
101 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
102 | instantiation | 112 | ⊢ |
| : , : |
103 | instantiation | 112 | ⊢ |
| : , : |
104 | instantiation | 113, 114 | ⊢ |
| : |
105 | instantiation | 115, 119, 116* | ⊢ |
| : , : |
106 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
108 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
109 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
112 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
113 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
114 | instantiation | 129, 121, 117 | ⊢ |
| : , : , : |
115 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
116 | instantiation | 118, 119 | ⊢ |
| : |
117 | instantiation | 129, 124, 120 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
119 | instantiation | 129, 121, 122 | ⊢ |
| : , : , : |
120 | instantiation | 129, 127, 123 | ⊢ |
| : , : , : |
121 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
122 | instantiation | 129, 124, 125 | ⊢ |
| : , : , : |
123 | instantiation | 129, 130, 126 | ⊢ |
| : , : , : |
124 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
125 | instantiation | 129, 127, 128 | ⊢ |
| : , : , : |
126 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
127 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
128 | instantiation | 129, 130, 131 | ⊢ |
| : , : , : |
129 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |