| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 59 | ⊢ |
2 | instantiation | 4, 76, 93, 5, 6, 11, 7, 12, 13, 44, 15, 16, 14 | , , , ⊢ |
| : , : , : , : , : , : , : |
3 | instantiation | 8, 93, 9, 10, 11, 12, 13, 44, 14, 15, 16, 17* | , , , ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
5 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
6 | instantiation | 18 | ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
8 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
9 | instantiation | 79 | ⊢ |
| : , : |
10 | instantiation | 79 | ⊢ |
| : , : |
11 | instantiation | 79 | ⊢ |
| : , : |
12 | instantiation | 19, 20, 21, 22 | ⊢ |
| : , : |
13 | instantiation | 24, 23, 81 | ⊢ |
| : , : |
14 | instantiation | 24, 44, 25 | ⊢ |
| : , : |
15 | instantiation | 96, 88, 26 | ⊢ |
| : , : , : |
16 | instantiation | 96, 88, 27 | ⊢ |
| : , : , : |
17 | instantiation | 28, 44, 89, 29, 30, 31*, 32* | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
19 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
20 | instantiation | 96, 88, 33 | ⊢ |
| : , : , : |
21 | instantiation | 96, 88, 34 | ⊢ |
| : , : , : |
22 | instantiation | 77, 35 | ⊢ |
| : |
23 | instantiation | 96, 88, 36 | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
25 | instantiation | 37, 38 | ⊢ |
| : |
26 | instantiation | 96, 66, 39 | ⊢ |
| : , : , : |
27 | assumption | | ⊢ |
28 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_real_powers |
29 | instantiation | 40, 53 | ⊢ |
| : |
30 | instantiation | 41, 42 | ⊢ |
| : |
31 | instantiation | 43, 44 | ⊢ |
| : |
32 | instantiation | 45, 95, 46, 90, 47*, 48*, 49* | ⊢ |
| : , : , : , : |
33 | instantiation | 96, 91, 50 | ⊢ |
| : , : , : |
34 | instantiation | 96, 91, 51 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
36 | instantiation | 96, 66, 52 | ⊢ |
| : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
38 | instantiation | 96, 88, 53 | ⊢ |
| : , : , : |
39 | assumption | | ⊢ |
40 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
41 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
42 | instantiation | 96, 54, 67 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
44 | instantiation | 96, 88, 55 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
46 | instantiation | 56, 95 | ⊢ |
| : |
47 | instantiation | 57, 86 | ⊢ |
| : |
48 | instantiation | 58, 86, 81, 65 | ⊢ |
| : , : |
49 | instantiation | 59, 60, 61 | ⊢ |
| : , : , : |
50 | instantiation | 96, 94, 62 | ⊢ |
| : , : , : |
51 | instantiation | 96, 94, 63 | ⊢ |
| : , : , : |
52 | assumption | | ⊢ |
53 | instantiation | 64, 89, 84, 65 | ⊢ |
| : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
55 | instantiation | 96, 66, 67 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
57 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
58 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
59 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
60 | instantiation | 68, 93, 69, 70, 71, 72 | ⊢ |
| : , : , : , : |
61 | instantiation | 73, 86, 81, 74 | ⊢ |
| : , : , : |
62 | instantiation | 96, 97, 75 | ⊢ |
| : , : , : |
63 | instantiation | 96, 97, 76 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
65 | instantiation | 77, 78 | ⊢ |
| : |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
67 | assumption | | ⊢ |
68 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
69 | instantiation | 79 | ⊢ |
| : , : |
70 | instantiation | 79 | ⊢ |
| : , : |
71 | instantiation | 80, 81 | ⊢ |
| : |
72 | instantiation | 82, 86, 83* | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
80 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
81 | instantiation | 96, 88, 84 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
83 | instantiation | 85, 86 | ⊢ |
| : |
84 | instantiation | 96, 91, 87 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
86 | instantiation | 96, 88, 89 | ⊢ |
| : , : , : |
87 | instantiation | 96, 94, 90 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
89 | instantiation | 96, 91, 92 | ⊢ |
| : , : , : |
90 | instantiation | 96, 97, 93 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
92 | instantiation | 96, 94, 95 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
95 | instantiation | 96, 97, 98 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |