| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , ⊢  |
| | : , : , :  |
| 1 | reference | 59 | ⊢  |
| 2 | instantiation | 4, 76, 93, 5, 6, 11, 7, 12, 13, 44, 15, 16, 14 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 3 | instantiation | 8, 93, 9, 10, 11, 12, 13, 44, 14, 15, 16, 17* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 5 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 6 | instantiation | 18 | ⊢  |
| | : , : , :  |
| 7 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 8 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 9 | instantiation | 79 | ⊢  |
| | : , :  |
| 10 | instantiation | 79 | ⊢  |
| | : , :  |
| 11 | instantiation | 79 | ⊢  |
| | : , :  |
| 12 | instantiation | 19, 20, 21, 22 | ⊢  |
| | : , :  |
| 13 | instantiation | 24, 23, 81 | ⊢  |
| | : , :  |
| 14 | instantiation | 24, 44, 25 | ⊢  |
| | : , :  |
| 15 | instantiation | 96, 88, 26 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 96, 88, 27 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 28, 44, 89, 29, 30, 31*, 32* | ⊢  |
| | : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 19 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 20 | instantiation | 96, 88, 33 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 96, 88, 34 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 77, 35 | ⊢  |
| | :  |
| 23 | instantiation | 96, 88, 36 | ⊢  |
| | : , : , :  |
| 24 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 25 | instantiation | 37, 38 | ⊢  |
| | :  |
| 26 | instantiation | 96, 66, 39 | ⊢  |
| | : , : , :  |
| 27 | assumption | | ⊢  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_real_powers |
| 29 | instantiation | 40, 53 | ⊢  |
| | :  |
| 30 | instantiation | 41, 42 | ⊢  |
| | :  |
| 31 | instantiation | 43, 44 | ⊢  |
| | :  |
| 32 | instantiation | 45, 95, 46, 90, 47*, 48*, 49* | ⊢  |
| | : , : , : , :  |
| 33 | instantiation | 96, 91, 50 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 96, 91, 51 | ⊢  |
| | : , : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 36 | instantiation | 96, 66, 52 | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 38 | instantiation | 96, 88, 53 | ⊢  |
| | : , : , :  |
| 39 | assumption | | ⊢  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 41 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
| 42 | instantiation | 96, 54, 67 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 44 | instantiation | 96, 88, 55 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 46 | instantiation | 56, 95 | ⊢  |
| | :  |
| 47 | instantiation | 57, 86 | ⊢  |
| | :  |
| 48 | instantiation | 58, 86, 81, 65 | ⊢  |
| | : , :  |
| 49 | instantiation | 59, 60, 61 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 96, 94, 62 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 96, 94, 63 | ⊢  |
| | : , : , :  |
| 52 | assumption | | ⊢  |
| 53 | instantiation | 64, 89, 84, 65 | ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
| 55 | instantiation | 96, 66, 67 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.negation.int_closure |
| 57 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 58 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 59 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 60 | instantiation | 68, 93, 69, 70, 71, 72 | ⊢  |
| | : , : , : , :  |
| 61 | instantiation | 73, 86, 81, 74 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 96, 97, 75 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 96, 97, 76 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 65 | instantiation | 77, 78 | ⊢  |
| | :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real |
| 67 | assumption | | ⊢  |
| 68 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 69 | instantiation | 79 | ⊢  |
| | : , :  |
| 70 | instantiation | 79 | ⊢  |
| | : , :  |
| 71 | instantiation | 80, 81 | ⊢  |
| | :  |
| 72 | instantiation | 82, 86, 83* | ⊢  |
| | : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 74 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 78 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 80 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 81 | instantiation | 96, 88, 84 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_neg_right |
| 83 | instantiation | 85, 86 | ⊢  |
| | :  |
| 84 | instantiation | 96, 91, 87 | ⊢  |
| | : , : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 86 | instantiation | 96, 88, 89 | ⊢  |
| | : , : , :  |
| 87 | instantiation | 96, 94, 90 | ⊢  |
| | : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 89 | instantiation | 96, 91, 92 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 96, 97, 93 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 92 | instantiation | 96, 94, 95 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 94 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 95 | instantiation | 96, 97, 98 | ⊢  |
| | : , : , :  |
| 96 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 97 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |