| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , ⊢  |
| : , : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 5, 6, 7 | , , , ⊢  |
| : , : , :  |
3 | instantiation | 14, 8, 81, 9, 10, 11, 12, 48, 23, 55, 25, 24, 26, 13* | , , , ⊢  |
| : , : , : , : , : , :  |
4 | instantiation | 14, 81, 15, 16, 17, 18, 23, 55, 25, 24, 26, 19* | , , , ⊢  |
| : , : , : , : , : , :  |
5 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
6 | instantiation | 21, 88, 89, 20, 48, 23, 55, 24, 25, 26 | , , , ⊢  |
| : , : , : , : , : , : , :  |
7 | instantiation | 21, 89, 88, 22, 48, 23, 55, 24, 25, 26 | , , , ⊢  |
| : , : , : , : , : , : , :  |
8 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
9 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
10 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
11 | instantiation | 31 | ⊢  |
| : , :  |
12 | instantiation | 27 | ⊢  |
| : , : , : , : , :  |
13 | instantiation | 28, 48, 82, 29*, 30* | ⊢  |
| : , : , :  |
14 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
15 | instantiation | 31 | ⊢  |
| : , :  |
16 | instantiation | 31 | ⊢  |
| : , :  |
17 | instantiation | 31 | ⊢  |
| : , :  |
18 | instantiation | 32, 48, 33 | ⊢  |
| : , :  |
19 | instantiation | 34, 55, 44, 35, 36, 37*, 38*, 39* | ⊢  |
| : , : , : , :  |
20 | instantiation | 40 | ⊢  |
| : , : , : , :  |
21 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
22 | instantiation | 40 | ⊢  |
| : , : , : , :  |
23 | instantiation | 90, 68, 41 | ⊢  |
| : , : , :  |
24 | instantiation | 90, 68, 42 | ⊢  |
| : , : , :  |
25 | instantiation | 43, 44, 57, 45 | ⊢  |
| : , :  |
26 | instantiation | 90, 68, 46 | ⊢  |
| : , : , :  |
27 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
28 | theorem | | ⊢  |
| proveit.numbers.exponentiation.product_of_posnat_powers |
29 | instantiation | 47, 48 | ⊢  |
| :  |
30 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
31 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
32 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
33 | instantiation | 90, 68, 49 | ⊢  |
| : , : , :  |
34 | theorem | | ⊢  |
| proveit.numbers.division.prod_of_fracs |
35 | instantiation | 90, 51, 50 | ⊢  |
| : , : , :  |
36 | instantiation | 90, 51, 52 | ⊢  |
| : , : , :  |
37 | instantiation | 53, 55 | ⊢  |
| :  |
38 | instantiation | 54, 55 | ⊢  |
| :  |
39 | instantiation | 56, 57 | ⊢  |
| :  |
40 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
41 | instantiation | 90, 71, 58 | ⊢  |
| : , : , :  |
42 | instantiation | 90, 71, 59 | ⊢  |
| : , : , :  |
43 | theorem | | ⊢  |
| proveit.numbers.division.div_complex_closure |
44 | instantiation | 90, 68, 60 | ⊢  |
| : , : , :  |
45 | instantiation | 61, 84 | ⊢  |
| :  |
46 | assumption | | ⊢  |
47 | theorem | | ⊢  |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
48 | instantiation | 90, 68, 62 | ⊢  |
| : , : , :  |
49 | instantiation | 90, 78, 63 | ⊢  |
| : , : , :  |
50 | instantiation | 90, 65, 64 | ⊢  |
| : , : , :  |
51 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
52 | instantiation | 90, 65, 66 | ⊢  |
| : , : , :  |
53 | theorem | | ⊢  |
| proveit.numbers.division.frac_one_denom |
54 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
55 | instantiation | 90, 68, 67 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_left |
57 | instantiation | 90, 68, 69 | ⊢  |
| : , : , :  |
58 | assumption | | ⊢  |
59 | assumption | | ⊢  |
60 | instantiation | 90, 78, 70 | ⊢  |
| : , : , :  |
61 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
62 | instantiation | 90, 71, 72 | ⊢  |
| : , : , :  |
63 | instantiation | 90, 86, 73 | ⊢  |
| : , : , :  |
64 | instantiation | 90, 75, 74 | ⊢  |
| : , : , :  |
65 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
66 | instantiation | 90, 75, 76 | ⊢  |
| : , : , :  |
67 | instantiation | 90, 78, 77 | ⊢  |
| : , : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
69 | instantiation | 90, 78, 79 | ⊢  |
| : , : , :  |
70 | instantiation | 90, 86, 80 | ⊢  |
| : , : , :  |
71 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
72 | assumption | | ⊢  |
73 | instantiation | 90, 91, 81 | ⊢  |
| : , : , :  |
74 | instantiation | 90, 83, 82 | ⊢  |
| : , : , :  |
75 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
76 | instantiation | 90, 83, 84 | ⊢  |
| : , : , :  |
77 | instantiation | 90, 86, 85 | ⊢  |
| : , : , :  |
78 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
79 | instantiation | 90, 86, 87 | ⊢  |
| : , : , :  |
80 | instantiation | 90, 91, 88 | ⊢  |
| : , : , :  |
81 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
82 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
83 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
84 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
85 | instantiation | 90, 91, 89 | ⊢  |
| : , : , :  |
86 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
87 | instantiation | 90, 91, 92 | ⊢  |
| : , : , :  |
88 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
89 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
90 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
91 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
92 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |