| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4 | , , , ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 2 | instantiation | 5, 6, 7 | , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 14, 8, 81, 9, 10, 11, 12, 48, 23, 55, 25, 24, 26, 13* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 4 | instantiation | 14, 81, 15, 16, 17, 18, 23, 55, 25, 24, 26, 19* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 5 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 6 | instantiation | 21, 88, 89, 20, 48, 23, 55, 24, 25, 26 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | instantiation | 21, 89, 88, 22, 48, 23, 55, 24, 25, 26 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 8 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 9 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 10 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 11 | instantiation | 31 | ⊢  |
| | : , :  |
| 12 | instantiation | 27 | ⊢  |
| | : , : , : , : , :  |
| 13 | instantiation | 28, 48, 82, 29*, 30* | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 15 | instantiation | 31 | ⊢  |
| | : , :  |
| 16 | instantiation | 31 | ⊢  |
| | : , :  |
| 17 | instantiation | 31 | ⊢  |
| | : , :  |
| 18 | instantiation | 32, 48, 33 | ⊢  |
| | : , :  |
| 19 | instantiation | 34, 55, 44, 35, 36, 37*, 38*, 39* | ⊢  |
| | : , : , : , :  |
| 20 | instantiation | 40 | ⊢  |
| | : , : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 22 | instantiation | 40 | ⊢  |
| | : , : , : , :  |
| 23 | instantiation | 90, 68, 41 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 90, 68, 42 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 43, 44, 57, 45 | ⊢  |
| | : , :  |
| 26 | instantiation | 90, 68, 46 | ⊢  |
| | : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 28 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_posnat_powers |
| 29 | instantiation | 47, 48 | ⊢  |
| | :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 31 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 32 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 33 | instantiation | 90, 68, 49 | ⊢  |
| | : , : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.division.prod_of_fracs |
| 35 | instantiation | 90, 51, 50 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 90, 51, 52 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 53, 55 | ⊢  |
| | :  |
| 38 | instantiation | 54, 55 | ⊢  |
| | :  |
| 39 | instantiation | 56, 57 | ⊢  |
| | :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 41 | instantiation | 90, 71, 58 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 90, 71, 59 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 44 | instantiation | 90, 68, 60 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 61, 84 | ⊢  |
| | :  |
| 46 | assumption | | ⊢  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 48 | instantiation | 90, 68, 62 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 90, 78, 63 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 90, 65, 64 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 52 | instantiation | 90, 65, 66 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 54 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 55 | instantiation | 90, 68, 67 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 57 | instantiation | 90, 68, 69 | ⊢  |
| | : , : , :  |
| 58 | assumption | | ⊢  |
| 59 | assumption | | ⊢  |
| 60 | instantiation | 90, 78, 70 | ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 62 | instantiation | 90, 71, 72 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 90, 86, 73 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 90, 75, 74 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 66 | instantiation | 90, 75, 76 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 90, 78, 77 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 69 | instantiation | 90, 78, 79 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 90, 86, 80 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real |
| 72 | assumption | | ⊢  |
| 73 | instantiation | 90, 91, 81 | ⊢  |
| | : , : , :  |
| 74 | instantiation | 90, 83, 82 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 76 | instantiation | 90, 83, 84 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 90, 86, 85 | ⊢  |
| | : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 79 | instantiation | 90, 86, 87 | ⊢  |
| | : , : , :  |
| 80 | instantiation | 90, 91, 88 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 82 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 84 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 85 | instantiation | 90, 91, 89 | ⊢  |
| | : , : , :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 87 | instantiation | 90, 91, 92 | ⊢  |
| | : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 89 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 90 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 92 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |