logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, , ,  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 68, 5, 6, 11, 12, 41, 14, 13, 15, , ,  ⊢  
  : , : , : , : , : , : , :
3instantiation7, 65, 8, 9, 10, 11, 12, 41, 13, 14, 15, 16*, , ,  ⊢  
  : , : , : , : , : , :
4theorem  ⊢  
 proveit.numbers.multiplication.leftward_commutation
5theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
6instantiation17  ⊢  
  : , : , :
7theorem  ⊢  
 proveit.numbers.multiplication.association
8instantiation18  ⊢  
  : , :
9instantiation18  ⊢  
  : , :
10instantiation18  ⊢  
  : , :
11instantiation66, 51, 19  ⊢  
  : , : , :
12instantiation20, 21  ⊢  
  :
13instantiation22, 41, 43, 23  ⊢  
  : , :
14instantiation24, 25, 41  ⊢  
  : , :
15instantiation66, 51, 26  ⊢  
  : , : , :
16instantiation27, 41, 28, 29, 30*, 31*, 32*  ⊢  
  : , : , : , :
17theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
18theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
19instantiation66, 45, 33  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.numbers.exponentiation.sqrt_complex_closure
21instantiation66, 51, 34  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.division.div_complex_closure
23instantiation35, 61  ⊢  
  :
24theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
25instantiation66, 51, 36  ⊢  
  : , : , :
26assumption  ⊢  
27theorem  ⊢  
 proveit.numbers.division.prod_of_fracs
28instantiation66, 38, 37  ⊢  
  : , : , :
29instantiation66, 38, 39  ⊢  
  : , : , :
30instantiation40, 41  ⊢  
  :
31theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_2_2
32instantiation42, 43  ⊢  
  :
33assumption  ⊢  
34instantiation66, 45, 44  ⊢  
  : , : , :
35theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
36instantiation66, 45, 46  ⊢  
  : , : , :
37instantiation66, 48, 47  ⊢  
  : , : , :
38theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
39instantiation66, 48, 49  ⊢  
  : , : , :
40theorem  ⊢  
 proveit.numbers.division.frac_one_denom
41instantiation66, 51, 50  ⊢  
  : , : , :
42theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
43instantiation66, 51, 52  ⊢  
  : , : , :
44assumption  ⊢  
45theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_neg_within_real
46assumption  ⊢  
47instantiation66, 54, 53  ⊢  
  : , : , :
48theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
49instantiation66, 54, 55  ⊢  
  : , : , :
50instantiation66, 57, 56  ⊢  
  : , : , :
51theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
52instantiation66, 57, 58  ⊢  
  : , : , :
53instantiation66, 60, 59  ⊢  
  : , : , :
54theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
55instantiation66, 60, 61  ⊢  
  : , : , :
56instantiation66, 63, 62  ⊢  
  : , : , :
57theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
58instantiation66, 63, 64  ⊢  
  : , : , :
59theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
60theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
61theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
62instantiation66, 67, 65  ⊢  
  : , : , :
63theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
64instantiation66, 67, 68  ⊢  
  : , : , :
65theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
66theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
67theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
68theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
*equality replacement requirements