| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
2 | instantiation | 4, 68, 5, 6, 11, 12, 41, 14, 13, 15 | , , , ⊢ |
| : , : , : , : , : , : , : |
3 | instantiation | 7, 65, 8, 9, 10, 11, 12, 41, 13, 14, 15, 16* | , , , ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
5 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
6 | instantiation | 17 | ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
8 | instantiation | 18 | ⊢ |
| : , : |
9 | instantiation | 18 | ⊢ |
| : , : |
10 | instantiation | 18 | ⊢ |
| : , : |
11 | instantiation | 66, 51, 19 | ⊢ |
| : , : , : |
12 | instantiation | 20, 21 | ⊢ |
| : |
13 | instantiation | 22, 41, 43, 23 | ⊢ |
| : , : |
14 | instantiation | 24, 25, 41 | ⊢ |
| : , : |
15 | instantiation | 66, 51, 26 | ⊢ |
| : , : , : |
16 | instantiation | 27, 41, 28, 29, 30*, 31*, 32* | ⊢ |
| : , : , : , : |
17 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
19 | instantiation | 66, 45, 33 | ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.exponentiation.sqrt_complex_closure |
21 | instantiation | 66, 51, 34 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
23 | instantiation | 35, 61 | ⊢ |
| : |
24 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
25 | instantiation | 66, 51, 36 | ⊢ |
| : , : , : |
26 | assumption | | ⊢ |
27 | theorem | | ⊢ |
| proveit.numbers.division.prod_of_fracs |
28 | instantiation | 66, 38, 37 | ⊢ |
| : , : , : |
29 | instantiation | 66, 38, 39 | ⊢ |
| : , : , : |
30 | instantiation | 40, 41 | ⊢ |
| : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
32 | instantiation | 42, 43 | ⊢ |
| : |
33 | assumption | | ⊢ |
34 | instantiation | 66, 45, 44 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
36 | instantiation | 66, 45, 46 | ⊢ |
| : , : , : |
37 | instantiation | 66, 48, 47 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
39 | instantiation | 66, 48, 49 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
41 | instantiation | 66, 51, 50 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
43 | instantiation | 66, 51, 52 | ⊢ |
| : , : , : |
44 | assumption | | ⊢ |
45 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
46 | assumption | | ⊢ |
47 | instantiation | 66, 54, 53 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
49 | instantiation | 66, 54, 55 | ⊢ |
| : , : , : |
50 | instantiation | 66, 57, 56 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
52 | instantiation | 66, 57, 58 | ⊢ |
| : , : , : |
53 | instantiation | 66, 60, 59 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
55 | instantiation | 66, 60, 61 | ⊢ |
| : , : , : |
56 | instantiation | 66, 63, 62 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
58 | instantiation | 66, 63, 64 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
62 | instantiation | 66, 67, 65 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
64 | instantiation | 66, 67, 68 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
66 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |