| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 130 | ⊢ |
2 | instantiation | 25, 4 | , , , ⊢ |
| : , : , : |
3 | instantiation | 5, 6, 7, 8, 9* | , , , ⊢ |
| : , : |
4 | instantiation | 130, 10, 11 | , , , ⊢ |
| : , : , : |
5 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
6 | instantiation | 37, 12, 13 | , , , ⊢ |
| : , : , : |
7 | instantiation | 14, 111 | ⊢ |
| : |
8 | instantiation | 15, 111, 106, 95 | ⊢ |
| : , : |
9 | instantiation | 130, 16, 17 | , , , ⊢ |
| : , : , : |
10 | instantiation | 18, 19, 20, 21 | , , , ⊢ |
| : , : , : , : |
11 | instantiation | 65, 66, 167, 68, 34, 72, 74, 111, 73, 83, 76 | , , , ⊢ |
| : , : , : , : , : , : , : |
12 | instantiation | 82, 40, 22 | , , , ⊢ |
| : , : |
13 | instantiation | 130, 23, 24 | , , , ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.numbers.exponentiation.sqrt_complex_closure |
15 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_not_eq_zero |
16 | instantiation | 25, 26 | ⊢ |
| : , : , : |
17 | instantiation | 130, 27, 28 | , , , ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
19 | instantiation | 130, 29, 30 | , , , ⊢ |
| : , : , : |
20 | instantiation | 69, 66, 167, 45, 68, 31, 32, 89, 111, 86, 51, 83, 76, 33* | , , , ⊢ |
| : , : , : , : , : , : |
21 | instantiation | 69, 167, 34, 35, 72, 74, 111, 86, 51, 83, 76, 36* | , , , ⊢ |
| : , : , : , : , : , : |
22 | instantiation | 37, 38, 39 | , , ⊢ |
| : , : , : |
23 | instantiation | 61, 172, 150, 66, 41, 68, 40, 111, 83, 76 | , , , ⊢ |
| : , : , : , : , : , : |
24 | instantiation | 61, 66, 167, 150, 68, 70, 41, 73, 74, 111, 83, 76 | , , , ⊢ |
| : , : , : , : , : , : |
25 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
26 | instantiation | 42, 111, 124, 43, 95, 44* | ⊢ |
| : , : , : |
27 | instantiation | 61, 66, 45, 172, 68, 46, 73, 74, 111, 83, 76, 75 | , , , ⊢ |
| : , : , : , : , : , : |
28 | instantiation | 130, 47, 48 | , , , ⊢ |
| : , : , : |
29 | instantiation | 65, 172, 149, 49, 89, 111, 86, 83, 51, 76 | , , , ⊢ |
| : , : , : , : , : , : , : |
30 | instantiation | 65, 149, 172, 50, 89, 111, 86, 83, 51, 76 | , , , ⊢ |
| : , : , : , : , : , : , : |
31 | instantiation | 153 | ⊢ |
| : , : |
32 | instantiation | 64 | ⊢ |
| : , : , : , : , : |
33 | instantiation | 52, 89, 133, 53*, 148* | ⊢ |
| : , : , : |
34 | instantiation | 153 | ⊢ |
| : , : |
35 | instantiation | 153 | ⊢ |
| : , : |
36 | instantiation | 54, 86, 160, 55, 56, 57*, 58*, 59* | ⊢ |
| : , : , : , : |
37 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
38 | instantiation | 82, 60, 76 | , , ⊢ |
| : , : |
39 | instantiation | 61, 66, 167, 172, 68, 62, 111, 83, 76 | , , ⊢ |
| : , : , : , : , : , : |
40 | instantiation | 82, 73, 74 | ⊢ |
| : , : |
41 | instantiation | 84 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_real_power |
43 | instantiation | 107, 163 | ⊢ |
| : |
44 | instantiation | 156, 106, 160, 63* | ⊢ |
| : , : |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
46 | instantiation | 64 | ⊢ |
| : , : , : , : , : |
47 | instantiation | 65, 150, 167, 66, 67, 72, 68, 73, 74, 111, 83, 76, 75 | , , , ⊢ |
| : , : , : , : , : , : , : |
48 | instantiation | 69, 167, 70, 71, 72, 73, 74, 111, 75, 83, 76, 77* | , , , ⊢ |
| : , : , : , : , : , : |
49 | instantiation | 78 | ⊢ |
| : , : , : , : |
50 | instantiation | 78 | ⊢ |
| : , : , : , : |
51 | instantiation | 85, 160, 87, 88 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
53 | instantiation | 110, 89 | ⊢ |
| : |
54 | theorem | | ⊢ |
| proveit.numbers.division.prod_of_fracs |
55 | instantiation | 170, 80, 79 | ⊢ |
| : , : , : |
56 | instantiation | 170, 80, 81 | ⊢ |
| : , : , : |
57 | instantiation | 128, 86 | ⊢ |
| : |
58 | instantiation | 159, 86 | ⊢ |
| : |
59 | instantiation | 154, 87 | ⊢ |
| : |
60 | instantiation | 82, 111, 83 | , ⊢ |
| : , : |
61 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
62 | instantiation | 153 | ⊢ |
| : , : |
63 | instantiation | 159, 106 | ⊢ |
| : |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
65 | theorem | | ⊢ |
| proveit.numbers.multiplication.leftward_commutation |
66 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
67 | instantiation | 84 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
69 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
70 | instantiation | 153 | ⊢ |
| : , : |
71 | instantiation | 153 | ⊢ |
| : , : |
72 | instantiation | 153 | ⊢ |
| : , : |
73 | instantiation | 85, 86, 87, 88 | ⊢ |
| : , : |
74 | instantiation | 90, 89, 155 | ⊢ |
| : , : |
75 | instantiation | 90, 111, 91 | ⊢ |
| : , : |
76 | instantiation | 170, 162, 92 | ⊢ |
| : , : , : |
77 | instantiation | 93, 111, 163, 94, 95, 96*, 97* | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
79 | instantiation | 170, 99, 98 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
81 | instantiation | 170, 99, 100 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
83 | instantiation | 170, 162, 101 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
85 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
86 | instantiation | 170, 162, 102 | ⊢ |
| : , : , : |
87 | instantiation | 170, 162, 103 | ⊢ |
| : , : , : |
88 | instantiation | 151, 135 | ⊢ |
| : |
89 | instantiation | 170, 162, 104 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
91 | instantiation | 105, 106 | ⊢ |
| : |
92 | assumption | | ⊢ |
93 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_real_powers |
94 | instantiation | 107, 124 | ⊢ |
| : |
95 | instantiation | 108, 109 | ⊢ |
| : |
96 | instantiation | 110, 111 | ⊢ |
| : |
97 | instantiation | 112, 169, 113, 164, 114*, 115*, 116* | ⊢ |
| : , : , : , : |
98 | instantiation | 170, 118, 117 | ⊢ |
| : , : , : |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
100 | instantiation | 170, 118, 119 | ⊢ |
| : , : , : |
101 | instantiation | 170, 140, 120 | ⊢ |
| : , : , : |
102 | instantiation | 170, 165, 121 | ⊢ |
| : , : , : |
103 | instantiation | 170, 165, 122 | ⊢ |
| : , : , : |
104 | instantiation | 170, 140, 123 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
106 | instantiation | 170, 162, 124 | ⊢ |
| : , : , : |
107 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
108 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
109 | instantiation | 170, 125, 141 | ⊢ |
| : , : , : |
110 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
111 | instantiation | 170, 162, 126 | ⊢ |
| : , : , : |
112 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
113 | instantiation | 127, 169 | ⊢ |
| : |
114 | instantiation | 128, 160 | ⊢ |
| : |
115 | instantiation | 129, 160, 155, 139 | ⊢ |
| : , : |
116 | instantiation | 130, 131, 132 | ⊢ |
| : , : , : |
117 | instantiation | 170, 134, 133 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
119 | instantiation | 170, 134, 135 | ⊢ |
| : , : , : |
120 | assumption | | ⊢ |
121 | instantiation | 170, 168, 136 | ⊢ |
| : , : , : |
122 | instantiation | 170, 168, 137 | ⊢ |
| : , : , : |
123 | assumption | | ⊢ |
124 | instantiation | 138, 163, 158, 139 | ⊢ |
| : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
126 | instantiation | 170, 140, 141 | ⊢ |
| : , : , : |
127 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
128 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
129 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
130 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
131 | instantiation | 142, 167, 143, 144, 145, 146 | ⊢ |
| : , : , : , : |
132 | instantiation | 147, 160, 155, 148 | ⊢ |
| : , : , : |
133 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
134 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
135 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
136 | instantiation | 170, 171, 149 | ⊢ |
| : , : , : |
137 | instantiation | 170, 171, 150 | ⊢ |
| : , : , : |
138 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
139 | instantiation | 151, 152 | ⊢ |
| : |
140 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
141 | assumption | | ⊢ |
142 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
143 | instantiation | 153 | ⊢ |
| : , : |
144 | instantiation | 153 | ⊢ |
| : , : |
145 | instantiation | 154, 155 | ⊢ |
| : |
146 | instantiation | 156, 160, 157* | ⊢ |
| : , : |
147 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
148 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
149 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
150 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
151 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
152 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
153 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
154 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
155 | instantiation | 170, 162, 158 | ⊢ |
| : , : , : |
156 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
157 | instantiation | 159, 160 | ⊢ |
| : |
158 | instantiation | 170, 165, 161 | ⊢ |
| : , : , : |
159 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
160 | instantiation | 170, 162, 163 | ⊢ |
| : , : , : |
161 | instantiation | 170, 168, 164 | ⊢ |
| : , : , : |
162 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
163 | instantiation | 170, 165, 166 | ⊢ |
| : , : , : |
164 | instantiation | 170, 171, 167 | ⊢ |
| : , : , : |
165 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
166 | instantiation | 170, 168, 169 | ⊢ |
| : , : , : |
167 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
168 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
169 | instantiation | 170, 171, 172 | ⊢ |
| : , : , : |
170 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
171 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
172 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |