| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , ⊢  |
| | : , : , :  |
| 1 | reference | 130 | ⊢  |
| 2 | instantiation | 25, 4 | , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 5, 6, 7, 8, 9* | , , , ⊢  |
| | : , :  |
| 4 | instantiation | 130, 10, 11 | , , , ⊢  |
| | : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 6 | instantiation | 37, 12, 13 | , , , ⊢  |
| | : , : , :  |
| 7 | instantiation | 14, 111 | ⊢  |
| | :  |
| 8 | instantiation | 15, 111, 106, 95 | ⊢  |
| | : , :  |
| 9 | instantiation | 130, 16, 17 | , , , ⊢  |
| | : , : , :  |
| 10 | instantiation | 18, 19, 20, 21 | , , , ⊢  |
| | : , : , : , :  |
| 11 | instantiation | 65, 66, 167, 68, 34, 72, 74, 111, 73, 83, 76 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 12 | instantiation | 82, 40, 22 | , , , ⊢  |
| | : , :  |
| 13 | instantiation | 130, 23, 24 | , , , ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.sqrt_complex_closure |
| 15 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_not_eq_zero |
| 16 | instantiation | 25, 26 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 130, 27, 28 | , , , ⊢  |
| | : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 19 | instantiation | 130, 29, 30 | , , , ⊢  |
| | : , : , :  |
| 20 | instantiation | 69, 66, 167, 45, 68, 31, 32, 89, 111, 86, 51, 83, 76, 33* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 21 | instantiation | 69, 167, 34, 35, 72, 74, 111, 86, 51, 83, 76, 36* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 22 | instantiation | 37, 38, 39 | , , ⊢  |
| | : , : , :  |
| 23 | instantiation | 61, 172, 150, 66, 41, 68, 40, 111, 83, 76 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 24 | instantiation | 61, 66, 167, 150, 68, 70, 41, 73, 74, 111, 83, 76 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 25 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 26 | instantiation | 42, 111, 124, 43, 95, 44* | ⊢  |
| | : , : , :  |
| 27 | instantiation | 61, 66, 45, 172, 68, 46, 73, 74, 111, 83, 76, 75 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 28 | instantiation | 130, 47, 48 | , , , ⊢  |
| | : , : , :  |
| 29 | instantiation | 65, 172, 149, 49, 89, 111, 86, 83, 51, 76 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 30 | instantiation | 65, 149, 172, 50, 89, 111, 86, 83, 51, 76 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 31 | instantiation | 153 | ⊢  |
| | : , :  |
| 32 | instantiation | 64 | ⊢  |
| | : , : , : , : , :  |
| 33 | instantiation | 52, 89, 133, 53*, 148* | ⊢  |
| | : , : , :  |
| 34 | instantiation | 153 | ⊢  |
| | : , :  |
| 35 | instantiation | 153 | ⊢  |
| | : , :  |
| 36 | instantiation | 54, 86, 160, 55, 56, 57*, 58*, 59* | ⊢  |
| | : , : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 38 | instantiation | 82, 60, 76 | , , ⊢  |
| | : , :  |
| 39 | instantiation | 61, 66, 167, 172, 68, 62, 111, 83, 76 | , , ⊢  |
| | : , : , : , : , : , :  |
| 40 | instantiation | 82, 73, 74 | ⊢  |
| | : , :  |
| 41 | instantiation | 84 | ⊢  |
| | : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.real_power_of_real_power |
| 43 | instantiation | 107, 163 | ⊢  |
| | :  |
| 44 | instantiation | 156, 106, 160, 63* | ⊢  |
| | : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 46 | instantiation | 64 | ⊢  |
| | : , : , : , : , :  |
| 47 | instantiation | 65, 150, 167, 66, 67, 72, 68, 73, 74, 111, 83, 76, 75 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 48 | instantiation | 69, 167, 70, 71, 72, 73, 74, 111, 75, 83, 76, 77* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 49 | instantiation | 78 | ⊢  |
| | : , : , : , :  |
| 50 | instantiation | 78 | ⊢  |
| | : , : , : , :  |
| 51 | instantiation | 85, 160, 87, 88 | ⊢  |
| | : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_posnat_powers |
| 53 | instantiation | 110, 89 | ⊢  |
| | :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.division.prod_of_fracs |
| 55 | instantiation | 170, 80, 79 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 170, 80, 81 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 128, 86 | ⊢  |
| | :  |
| 58 | instantiation | 159, 86 | ⊢  |
| | :  |
| 59 | instantiation | 154, 87 | ⊢  |
| | :  |
| 60 | instantiation | 82, 111, 83 | , ⊢  |
| | : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 62 | instantiation | 153 | ⊢  |
| | : , :  |
| 63 | instantiation | 159, 106 | ⊢  |
| | :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 65 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 66 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 67 | instantiation | 84 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 69 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 70 | instantiation | 153 | ⊢  |
| | : , :  |
| 71 | instantiation | 153 | ⊢  |
| | : , :  |
| 72 | instantiation | 153 | ⊢  |
| | : , :  |
| 73 | instantiation | 85, 86, 87, 88 | ⊢  |
| | : , :  |
| 74 | instantiation | 90, 89, 155 | ⊢  |
| | : , :  |
| 75 | instantiation | 90, 111, 91 | ⊢  |
| | : , :  |
| 76 | instantiation | 170, 162, 92 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 93, 111, 163, 94, 95, 96*, 97* | ⊢  |
| | : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 79 | instantiation | 170, 99, 98 | ⊢  |
| | : , : , :  |
| 80 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 81 | instantiation | 170, 99, 100 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 83 | instantiation | 170, 162, 101 | ⊢  |
| | : , : , :  |
| 84 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 85 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 86 | instantiation | 170, 162, 102 | ⊢  |
| | : , : , :  |
| 87 | instantiation | 170, 162, 103 | ⊢  |
| | : , : , :  |
| 88 | instantiation | 151, 135 | ⊢  |
| | :  |
| 89 | instantiation | 170, 162, 104 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 91 | instantiation | 105, 106 | ⊢  |
| | :  |
| 92 | assumption | | ⊢  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.product_of_real_powers |
| 94 | instantiation | 107, 124 | ⊢  |
| | :  |
| 95 | instantiation | 108, 109 | ⊢  |
| | :  |
| 96 | instantiation | 110, 111 | ⊢  |
| | :  |
| 97 | instantiation | 112, 169, 113, 164, 114*, 115*, 116* | ⊢  |
| | : , : , : , :  |
| 98 | instantiation | 170, 118, 117 | ⊢  |
| | : , : , :  |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 100 | instantiation | 170, 118, 119 | ⊢  |
| | : , : , :  |
| 101 | instantiation | 170, 140, 120 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 170, 165, 121 | ⊢  |
| | : , : , :  |
| 103 | instantiation | 170, 165, 122 | ⊢  |
| | : , : , :  |
| 104 | instantiation | 170, 140, 123 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 106 | instantiation | 170, 162, 124 | ⊢  |
| | : , : , :  |
| 107 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 108 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
| 109 | instantiation | 170, 125, 141 | ⊢  |
| | : , : , :  |
| 110 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 111 | instantiation | 170, 162, 126 | ⊢  |
| | : , : , :  |
| 112 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 113 | instantiation | 127, 169 | ⊢  |
| | :  |
| 114 | instantiation | 128, 160 | ⊢  |
| | :  |
| 115 | instantiation | 129, 160, 155, 139 | ⊢  |
| | : , :  |
| 116 | instantiation | 130, 131, 132 | ⊢  |
| | : , : , :  |
| 117 | instantiation | 170, 134, 133 | ⊢  |
| | : , : , :  |
| 118 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 119 | instantiation | 170, 134, 135 | ⊢  |
| | : , : , :  |
| 120 | assumption | | ⊢  |
| 121 | instantiation | 170, 168, 136 | ⊢  |
| | : , : , :  |
| 122 | instantiation | 170, 168, 137 | ⊢  |
| | : , : , :  |
| 123 | assumption | | ⊢  |
| 124 | instantiation | 138, 163, 158, 139 | ⊢  |
| | : , :  |
| 125 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero |
| 126 | instantiation | 170, 140, 141 | ⊢  |
| | : , : , :  |
| 127 | theorem | | ⊢  |
| | proveit.numbers.negation.int_closure |
| 128 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 129 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 130 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 131 | instantiation | 142, 167, 143, 144, 145, 146 | ⊢  |
| | : , : , : , :  |
| 132 | instantiation | 147, 160, 155, 148 | ⊢  |
| | : , : , :  |
| 133 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 134 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 135 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 136 | instantiation | 170, 171, 149 | ⊢  |
| | : , : , :  |
| 137 | instantiation | 170, 171, 150 | ⊢  |
| | : , : , :  |
| 138 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 139 | instantiation | 151, 152 | ⊢  |
| | :  |
| 140 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real |
| 141 | assumption | | ⊢  |
| 142 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 143 | instantiation | 153 | ⊢  |
| | : , :  |
| 144 | instantiation | 153 | ⊢  |
| | : , :  |
| 145 | instantiation | 154, 155 | ⊢  |
| | :  |
| 146 | instantiation | 156, 160, 157* | ⊢  |
| | : , :  |
| 147 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 148 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 149 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 150 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 151 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 152 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 153 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 154 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 155 | instantiation | 170, 162, 158 | ⊢  |
| | : , : , :  |
| 156 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_neg_right |
| 157 | instantiation | 159, 160 | ⊢  |
| | :  |
| 158 | instantiation | 170, 165, 161 | ⊢  |
| | : , : , :  |
| 159 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 160 | instantiation | 170, 162, 163 | ⊢  |
| | : , : , :  |
| 161 | instantiation | 170, 168, 164 | ⊢  |
| | : , : , :  |
| 162 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 163 | instantiation | 170, 165, 166 | ⊢  |
| | : , : , :  |
| 164 | instantiation | 170, 171, 167 | ⊢  |
| | : , : , :  |
| 165 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 166 | instantiation | 170, 168, 169 | ⊢  |
| | : , : , :  |
| 167 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 168 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 169 | instantiation | 170, 171, 172 | ⊢  |
| | : , : , :  |
| 170 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 171 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 172 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |