logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.exponentiation.exp_not_eq_zero
2instantiation26, 6, 5  ⊢  
  : , : , :
3instantiation26, 6, 7  ⊢  
  : , : , :
4instantiation8, 9  ⊢  
  :
5instantiation26, 10, 16  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
7instantiation11, 12, 13, 14  ⊢  
  : , :
8theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero
9instantiation26, 15, 16  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_neg_within_real
11theorem  ⊢  
 proveit.numbers.division.div_real_closure
12instantiation26, 18, 17  ⊢  
  : , : , :
13instantiation26, 18, 19  ⊢  
  : , : , :
14instantiation20, 21  ⊢  
  :
15theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_neg_within_real_nonzero
16assumption  ⊢  
17instantiation26, 23, 22  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
19instantiation26, 23, 24  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
21theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
22instantiation26, 27, 25  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
24instantiation26, 27, 28  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
26theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
27theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
28theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2