| step type | requirements | statement |
0 | instantiation | 1, 2, 3* | , , ⊢ |
| : , : |
1 | reference | 19 | ⊢ |
2 | modus ponens | 4, 5 | , , ⊢ |
3 | instantiation | 12, 6, 7 | , , ⊢ |
| : , : , : |
4 | instantiation | 8, 32, 68, 31, 9, 33 | ⊢ |
| : , : , : , : , : , : , : , : , : , : |
5 | generalization | 10 | , , ⊢ |
6 | instantiation | 22, 11 | , ⊢ |
| : , : , : |
7 | instantiation | 12, 13, 14, 15* | , , ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
9 | instantiation | 16, 54, 55, 69 | ⊢ |
| : , : , : |
10 | instantiation | 53, 54, 55, 69, 17, 18, 21 | , , ⊢ |
| : , : , : , : |
11 | instantiation | 19, 20 | , ⊢ |
| : , : |
12 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
13 | instantiation | 30, 66, 32, 31, 33, 69, 57, 21 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
14 | instantiation | 22, 23 | , , ⊢ |
| : , : , : |
15 | instantiation | 24, 25, 26, 60, 27* | , , ⊢ |
| : , : , : , : , : |
16 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
17 | instantiation | 61 | ⊢ |
| : , : |
18 | instantiation | 29, 69, 66, 70 | , ⊢ |
| : , : , : , : |
19 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
20 | modus ponens | 28, 57 | , ⊢ |
21 | instantiation | 29, 69, 66, 58 | , ⊢ |
| : , : , : , : |
22 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
23 | instantiation | 30, 66, 31, 32, 33, 69, 57, 58 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
24 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
25 | instantiation | 34, 41 | ⊢ |
| : |
26 | instantiation | 43, 35, 36 | , ⊢ |
| : , : , : |
27 | instantiation | 37, 60, 38* | ⊢ |
| : , : |
28 | instantiation | 39, 68, 69, 66 | ⊢ |
| : , : , : , : , : , : , : |
29 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
30 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
32 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
33 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
34 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
35 | instantiation | 40, 41, 42 | ⊢ |
| : , : , : |
36 | instantiation | 43, 44, 45 | , ⊢ |
| : , : , : |
37 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
38 | instantiation | 46, 60, 68, 47*, 48* | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
40 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
42 | instantiation | 49, 65 | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
44 | instantiation | 50, 54, 51, 72, 52* | ⊢ |
| : , : , : |
45 | instantiation | 53, 54, 55, 69, 56, 57, 58 | , ⊢ |
| : , : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
47 | instantiation | 59, 60 | ⊢ |
| : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
49 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
50 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
51 | instantiation | 61 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_3_3 |
53 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
55 | instantiation | 61 | ⊢ |
| : , : |
56 | instantiation | 61 | ⊢ |
| : , : |
57 | modus ponens | 62, 63 | ⊢ |
58 | assumption | | ⊢ |
59 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
60 | instantiation | 64, 65, 66 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
62 | instantiation | 67, 68, 69 | ⊢ |
| : , : , : , : , : , : |
63 | generalization | 70 | ⊢ |
64 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
66 | assumption | | ⊢ |
67 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
69 | instantiation | 71, 72 | ⊢ |
| : |
70 | assumption | | ⊢ |
71 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
72 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
*equality replacement requirements |