logo

Expression of type InSet

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import CartExp, InSet
from proveit.numbers import Real, three
In [2]:
# build up the expression from sub-expressions
sub_expr1 = CartExp(Real, three)
expr = InSet(TensorProd(ScalarMult(beta, x), ScalarMult(beta, y)), TensorProd(sub_expr1, sub_expr1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\beta \cdot x\right) {\otimes} \left(\beta \cdot y\right)\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10, 10
8Operationoperator: 12
operands: 11
9Operationoperator: 12
operands: 13
10Operationoperator: 14
operands: 15
11ExprTuple17, 16
12Literal
13ExprTuple17, 18
14Literal
15ExprTuple19, 20
16Variable
17Variable
18Variable
19Literal
20Literal