logo

Expression of type Implies

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import i, x
from proveit.linear_algebra import VecSum
from proveit.logic import CartExp, Forall, Implies, InSet
from proveit.numbers import Interval, Real, four, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = CartExp(Real, three)
sub_expr3 = Interval(two, four)
expr = Implies(Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(x, sub_expr2), domain = sub_expr3), InSet(VecSum(index_or_indices = sub_expr1, summand = x, domain = sub_expr3), sub_expr2)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[\forall_{i \in \{2~\ldotp \ldotp~4\}}~\left(x \in \mathbb{R}^{3}\right)\right] \Rightarrow  \\ \left(\left(\sum_{i=2}^{4} x\right) \in \mathbb{R}^{3}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 8
4Operationoperator: 23
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 18
8Lambdaparameter: 27
body: 10
9Operationoperator: 11
operand: 14
10Conditionalvalue: 13
condition: 20
11Literal
12ExprTuple14
13Operationoperator: 23
operands: 15
14Lambdaparameter: 27
body: 17
15ExprTuple19, 18
16ExprTuple27
17Conditionalvalue: 19
condition: 20
18Operationoperator: 21
operands: 22
19Variable
20Operationoperator: 23
operands: 24
21Literal
22ExprTuple25, 26
23Literal
24ExprTuple27, 28
25Literal
26Literal
27Variable
28Operationoperator: 29
operands: 30
29Literal
30ExprTuple31, 32
31Literal
32Literal