logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Exp, Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
expr = Equals(VecSum(index_or_indices = sub_expr1, summand = TensorProd(ScalarMult(beta, x), ScalarMult(beta, y)), domain = sub_expr2), ScalarMult(Exp(beta, two), TensorProd(VecSum(index_or_indices = sub_expr1, summand = x, domain = sub_expr2), y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\left(\beta \cdot x\right) {\otimes} \left(\beta \cdot y\right)\right)\right) = \left(\beta^{2} \cdot \left(\left(\sum_{i=2}^{4} x\right) {\otimes} y\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 18
operand: 7
4Operationoperator: 24
operands: 6
5ExprTuple7
6ExprTuple8, 9
7Lambdaparameter: 34
body: 10
8Operationoperator: 11
operands: 12
9Operationoperator: 16
operands: 13
10Conditionalvalue: 14
condition: 31
11Literal
12ExprTuple28, 38
13ExprTuple15, 29
14Operationoperator: 16
operands: 17
15Operationoperator: 18
operand: 22
16Literal
17ExprTuple20, 21
18Literal
19ExprTuple22
20Operationoperator: 24
operands: 23
21Operationoperator: 24
operands: 25
22Lambdaparameter: 34
body: 27
23ExprTuple28, 30
24Literal
25ExprTuple28, 29
26ExprTuple34
27Conditionalvalue: 30
condition: 31
28Variable
29Variable
30Variable
31Operationoperator: 32
operands: 33
32Literal
33ExprTuple34, 35
34Variable
35Operationoperator: 36
operands: 37
36Literal
37ExprTuple38, 39
38Literal
39Literal