logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Exp, Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
expr = Equals(TensorProd(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(beta, x), domain = sub_expr2), ScalarMult(beta, y)), ScalarMult(Exp(beta, two), TensorProd(VecSum(index_or_indices = sub_expr1, summand = x, domain = sub_expr2), y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\sum_{i=2}^{4} \left(\beta \cdot x\right)\right) {\otimes} \left(\beta \cdot y\right)\right) = \left(\beta^{2} \cdot \left(\left(\sum_{i=2}^{4} x\right) {\otimes} y\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 15
operands: 5
4Operationoperator: 25
operands: 6
5ExprTuple7, 8
6ExprTuple9, 10
7Operationoperator: 21
operand: 17
8Operationoperator: 25
operands: 12
9Operationoperator: 13
operands: 14
10Operationoperator: 15
operands: 16
11ExprTuple17
12ExprTuple29, 19
13Literal
14ExprTuple29, 38
15Literal
16ExprTuple18, 19
17Lambdaparameter: 34
body: 20
18Operationoperator: 21
operand: 24
19Variable
20Conditionalvalue: 23
condition: 31
21Literal
22ExprTuple24
23Operationoperator: 25
operands: 26
24Lambdaparameter: 34
body: 28
25Literal
26ExprTuple29, 30
27ExprTuple34
28Conditionalvalue: 30
condition: 31
29Variable
30Variable
31Operationoperator: 32
operands: 33
32Literal
33ExprTuple34, 35
34Variable
35Operationoperator: 36
operands: 37
36Literal
37ExprTuple38, 39
38Literal
39Literal