logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
sub_expr3 = ScalarMult(beta, y)
expr = Equals(TensorProd(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(beta, x), domain = sub_expr2), sub_expr3), TensorProd(ScalarMult(beta, VecSum(index_or_indices = sub_expr1, summand = x, domain = sub_expr2)), sub_expr3))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\sum_{i=2}^{4} \left(\beta \cdot x\right)\right) {\otimes} \left(\beta \cdot y\right)\right) = \left(\left(\beta \cdot \left(\sum_{i=2}^{4} x\right)\right) {\otimes} \left(\beta \cdot y\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 10
6Literal
7ExprTuple9, 10
8Operationoperator: 18
operand: 14
9Operationoperator: 22
operands: 12
10Operationoperator: 22
operands: 13
11ExprTuple14
12ExprTuple26, 15
13ExprTuple26, 16
14Lambdaparameter: 31
body: 17
15Operationoperator: 18
operand: 21
16Variable
17Conditionalvalue: 20
condition: 28
18Literal
19ExprTuple21
20Operationoperator: 22
operands: 23
21Lambdaparameter: 31
body: 25
22Literal
23ExprTuple26, 27
24ExprTuple31
25Conditionalvalue: 27
condition: 28
26Variable
27Variable
28Operationoperator: 29
operands: 30
29Literal
30ExprTuple31, 32
31Variable
32Operationoperator: 33
operands: 34
33Literal
34ExprTuple35, 36
35Literal
36Literal