logo

Expression of type VecSum

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import i, x
from proveit.linear_algebra import VecSum
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
expr = VecSum(index_or_indices = [i], summand = x, domain = Interval(two, four))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\sum_{i=2}^{4} x
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
with_wrappingIf 'True', wrap the Expression after the parametersNoneNone/False('with_wrapping',)
condition_wrappingWrap 'before' or 'after' the condition (or None).NoneNone/False('with_wrap_after_condition', 'with_wrap_before_condition')
wrap_paramsIf 'True', wraps every two parameters AND wraps the Expression after the parametersNoneNone/False('with_params',)
justificationjustify to the 'left', 'center', or 'right' in the array cellscentercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Lambdaparameter: 10
body: 5
4ExprTuple10
5Conditionalvalue: 6
condition: 7
6Variable
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11
10Variable
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14, 15
14Literal
15Literal