| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | , , , , ⊢ |
| : , : , : |
1 | reference | 55 | ⊢ |
2 | instantiation | 87, 5, 6*, 7* | , , , , ⊢ |
| : , : , : |
3 | instantiation | 59, 8 | , , , , ⊢ |
| : , : |
4 | instantiation | 55, 9, 10 | , , , , ⊢ |
| : , : , : |
5 | modus ponens | 11, 12 | , , , , ⊢ |
6 | instantiation | 13, 110 | ⊢ |
| : , : |
7 | instantiation | 13, 110 | ⊢ |
| : , : |
8 | modus ponens | 14, 15 | , , , , ⊢ |
9 | instantiation | 87, 16 | , , ⊢ |
| : , : , : |
10 | instantiation | 69, 70, 71, 78, 72, 46, 73 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
11 | instantiation | 17, 77 | ⊢ |
| : , : , : , : , : , : , : |
12 | generalization | 18 | , , , , ⊢ |
13 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
14 | instantiation | 19, 71, 77, 36 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
15 | generalization | 20 | , , , , ⊢ |
16 | instantiation | 55, 21, 22 | , , ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
18 | instantiation | 23, 24, 25, 93, 94 | , , , , , ⊢ |
| : , : , : , : , : |
19 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
20 | instantiation | 51, 26, 27 | , , , , , ⊢ |
| : , : , : |
21 | instantiation | 87, 28 | , ⊢ |
| : , : , : |
22 | instantiation | 59, 29 | , , ⊢ |
| : , : |
23 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
24 | instantiation | 50, 84, 30, 31 | ⊢ |
| : , : , : |
25 | instantiation | 52, 84, 30, 31, 54, 32, 33, 34 | , , , ⊢ |
| : , : , : , : |
26 | instantiation | 35, 36, 37, 38 | , , , , , ⊢ |
| : , : , : , : |
27 | instantiation | 39, 40, 41, 42 | , , , , , ⊢ |
| : , : , : , : |
28 | modus ponens | 43, 44 | , ⊢ |
29 | modus ponens | 45, 46 | , , ⊢ |
30 | instantiation | 68 | ⊢ |
| : , : , : |
31 | instantiation | 47, 84 | ⊢ |
| : |
32 | instantiation | 48, 49, 72 | ⊢ |
| : , : , : |
33 | instantiation | 48, 49, 79 | , ⊢ |
| : , : , : |
34 | instantiation | 48, 49, 73 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
36 | instantiation | 50, 84, 53, 78 | ⊢ |
| : , : , : |
37 | instantiation | 51, 70, 88 | , ⊢ |
| : , : , : |
38 | instantiation | 52, 84, 53, 78, 54, 72, 79, 73 | , , , ⊢ |
| : , : , : , : |
39 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
40 | instantiation | 55, 56, 57 | , , , , , ⊢ |
| : , : , : |
41 | instantiation | 58 | ⊢ |
| : |
42 | instantiation | 59, 60 | , ⊢ |
| : , : |
43 | instantiation | 61, 77 | ⊢ |
| : , : , : , : , : , : |
44 | generalization | 62 | , ⊢ |
45 | instantiation | 63, 77, 78, 70 | , ⊢ |
| : , : , : , : , : , : , : |
46 | modus ponens | 64, 65 | ⊢ |
47 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
48 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
49 | instantiation | 66, 84, 67 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
51 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
52 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
53 | instantiation | 68 | ⊢ |
| : , : , : |
54 | instantiation | 68 | ⊢ |
| : , : , : |
55 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
56 | instantiation | 87, 82 | , ⊢ |
| : , : , : |
57 | instantiation | 69, 70, 71, 78, 72, 79, 73 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
58 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
59 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
60 | instantiation | 87, 88 | , ⊢ |
| : , : , : |
61 | axiom | | ⊢ |
| proveit.core_expr_types.lambda_maps.lambda_substitution |
62 | instantiation | 74, 75 | , ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
64 | instantiation | 76, 77, 78 | ⊢ |
| : , : , : , : , : , : |
65 | generalization | 79 | ⊢ |
66 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
67 | instantiation | 80, 99 | ⊢ |
| : , : |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
69 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
70 | instantiation | 81, 98, 100 | , ⊢ |
| : , : |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
72 | assumption | | ⊢ |
73 | assumption | | ⊢ |
74 | axiom | | ⊢ |
| proveit.core_expr_types.conditionals.conditional_substitution |
75 | deduction | 82 | , ⊢ |
76 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
78 | instantiation | 83, 84 | ⊢ |
| : |
79 | instantiation | 85, 86 | , ⊢ |
| : |
80 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
81 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
82 | instantiation | 87, 88 | , ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
85 | assumption | | ⊢ |
86 | instantiation | 89, 90, 91 | ⊢ |
| : |
87 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
88 | instantiation | 92, 93, 94 | , ⊢ |
| : , : |
89 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
90 | instantiation | 112, 95, 110 | ⊢ |
| : , : , : |
91 | instantiation | 96, 97 | ⊢ |
| : , : |
92 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
93 | instantiation | 112, 99, 98 | ⊢ |
| : , : , : |
94 | instantiation | 112, 99, 100 | ⊢ |
| : , : , : |
95 | instantiation | 101, 108, 109 | ⊢ |
| : , : |
96 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
97 | instantiation | 102, 103, 104 | ⊢ |
| : , : , : |
98 | assumption | | ⊢ |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
100 | assumption | | ⊢ |
101 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
102 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
103 | instantiation | 105, 106 | ⊢ |
| : |
104 | instantiation | 107, 108, 109, 110 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
106 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
108 | instantiation | 112, 113, 111 | ⊢ |
| : , : , : |
109 | instantiation | 112, 113, 114 | ⊢ |
| : , : , : |
110 | assumption | | ⊢ |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
112 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
113 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
114 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |