| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4* | , , , , ⊢  |
| | : , : , :  |
| 1 | reference | 55 | ⊢  |
| 2 | instantiation | 87, 5, 6*, 7* | , , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 59, 8 | , , , , ⊢  |
| | : , :  |
| 4 | instantiation | 55, 9, 10 | , , , , ⊢  |
| | : , : , :  |
| 5 | modus ponens | 11, 12 | , , , , ⊢  |
| 6 | instantiation | 13, 110 | ⊢  |
| | : , :  |
| 7 | instantiation | 13, 110 | ⊢  |
| | : , :  |
| 8 | modus ponens | 14, 15 | , , , , ⊢  |
| 9 | instantiation | 87, 16 | , , ⊢  |
| | : , : , :  |
| 10 | instantiation | 69, 70, 71, 78, 72, 46, 73 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 11 | instantiation | 17, 77 | ⊢  |
| | : , : , : , : , : , : , :  |
| 12 | generalization | 18 | , , , , ⊢  |
| 13 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 14 | instantiation | 19, 71, 77, 36 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 15 | generalization | 20 | , , , , ⊢  |
| 16 | instantiation | 55, 21, 22 | , , ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 18 | instantiation | 23, 24, 25, 93, 94 | , , , , , ⊢  |
| | : , : , : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 20 | instantiation | 51, 26, 27 | , , , , , ⊢  |
| | : , : , :  |
| 21 | instantiation | 87, 28 | , ⊢  |
| | : , : , :  |
| 22 | instantiation | 59, 29 | , , ⊢  |
| | : , :  |
| 23 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 24 | instantiation | 50, 84, 30, 31 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 52, 84, 30, 31, 54, 32, 33, 34 | , , , ⊢  |
| | : , : , : , :  |
| 26 | instantiation | 35, 36, 37, 38 | , , , , , ⊢  |
| | : , : , : , :  |
| 27 | instantiation | 39, 40, 41, 42 | , , , , , ⊢  |
| | : , : , : , :  |
| 28 | modus ponens | 43, 44 | , ⊢  |
| 29 | modus ponens | 45, 46 | , , ⊢  |
| 30 | instantiation | 68 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 47, 84 | ⊢  |
| | :  |
| 32 | instantiation | 48, 49, 72 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 48, 49, 79 | , ⊢  |
| | : , : , :  |
| 34 | instantiation | 48, 49, 73 | ⊢  |
| | : , : , :  |
| 35 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 36 | instantiation | 50, 84, 53, 78 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 51, 70, 88 | , ⊢  |
| | : , : , :  |
| 38 | instantiation | 52, 84, 53, 78, 54, 72, 79, 73 | , , , ⊢  |
| | : , : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 40 | instantiation | 55, 56, 57 | , , , , , ⊢  |
| | : , : , :  |
| 41 | instantiation | 58 | ⊢  |
| | :  |
| 42 | instantiation | 59, 60 | , ⊢  |
| | : , :  |
| 43 | instantiation | 61, 77 | ⊢  |
| | : , : , : , : , : , :  |
| 44 | generalization | 62 | , ⊢  |
| 45 | instantiation | 63, 77, 78, 70 | , ⊢  |
| | : , : , : , : , : , : , :  |
| 46 | modus ponens | 64, 65 | ⊢  |
| 47 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 48 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 49 | instantiation | 66, 84, 67 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 51 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 52 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 53 | instantiation | 68 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 68 | ⊢  |
| | : , : , :  |
| 55 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 56 | instantiation | 87, 82 | , ⊢  |
| | : , : , :  |
| 57 | instantiation | 69, 70, 71, 78, 72, 79, 73 | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 58 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 59 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 60 | instantiation | 87, 88 | , ⊢  |
| | : , : , :  |
| 61 | axiom | | ⊢  |
| | proveit.core_expr_types.lambda_maps.lambda_substitution |
| 62 | instantiation | 74, 75 | , ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
| 64 | instantiation | 76, 77, 78 | ⊢  |
| | : , : , : , : , : , :  |
| 65 | generalization | 79 | ⊢  |
| 66 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 67 | instantiation | 80, 99 | ⊢  |
| | : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 69 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 70 | instantiation | 81, 98, 100 | , ⊢  |
| | : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 72 | assumption | | ⊢  |
| 73 | assumption | | ⊢  |
| 74 | axiom | | ⊢  |
| | proveit.core_expr_types.conditionals.conditional_substitution |
| 75 | deduction | 82 | , ⊢  |
| 76 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 78 | instantiation | 83, 84 | ⊢  |
| | :  |
| 79 | instantiation | 85, 86 | , ⊢  |
| | :  |
| 80 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 81 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 82 | instantiation | 87, 88 | , ⊢  |
| | : , : , :  |
| 83 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 84 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 85 | assumption | | ⊢  |
| 86 | instantiation | 89, 90, 91 | ⊢  |
| | :  |
| 87 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 88 | instantiation | 92, 93, 94 | , ⊢  |
| | : , :  |
| 89 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 90 | instantiation | 112, 95, 110 | ⊢  |
| | : , : , :  |
| 91 | instantiation | 96, 97 | ⊢  |
| | : , :  |
| 92 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 93 | instantiation | 112, 99, 98 | ⊢  |
| | : , : , :  |
| 94 | instantiation | 112, 99, 100 | ⊢  |
| | : , : , :  |
| 95 | instantiation | 101, 108, 109 | ⊢  |
| | : , :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 97 | instantiation | 102, 103, 104 | ⊢  |
| | : , : , :  |
| 98 | assumption | | ⊢  |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 100 | assumption | | ⊢  |
| 101 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 102 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 103 | instantiation | 105, 106 | ⊢  |
| | :  |
| 104 | instantiation | 107, 108, 109, 110 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 106 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 107 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 108 | instantiation | 112, 113, 111 | ⊢  |
| | : , : , :  |
| 109 | instantiation | 112, 113, 114 | ⊢  |
| | : , : , :  |
| 110 | assumption | | ⊢  |
| 111 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 112 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 113 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 114 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |