logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, fi, gamma, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals
from proveit.numbers import Mult
In [2]:
# build up the expression from sub-expressions
expr = Equals(TensorProd(x, ScalarMult(ScalarMult(gamma, beta), fi), y), ScalarMult(Mult(gamma, beta), TensorProd(x, fi, y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x {\otimes} \left(\left(\gamma \cdot \beta\right) \cdot f\left(i\right)\right) {\otimes} y\right) = \left(\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 12
operands: 5
4Operationoperator: 18
operands: 6
5ExprTuple15, 7, 17
6ExprTuple8, 9
7Operationoperator: 18
operands: 10
8Operationoperator: 11
operands: 19
9Operationoperator: 12
operands: 13
10ExprTuple14, 16
11Literal
12Literal
13ExprTuple15, 16, 17
14Operationoperator: 18
operands: 19
15Variable
16Operationoperator: 20
operand: 24
17Variable
18Literal
19ExprTuple22, 23
20Variable
21ExprTuple24
22Variable
23Variable
24Variable