logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, fi, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
sub_expr3 = TensorProd(x, fi, y)
expr = Equals(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(gamma, ScalarMult(beta, sub_expr3)), domain = sub_expr2), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(ScalarMult(gamma, beta), sub_expr3), domain = sub_expr2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\gamma \cdot \left(\beta \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)\right)\right) = \left(\sum_{i=2}^{4} \left(\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operand: 8
4Operationoperator: 6
operand: 9
5ExprTuple8
6Literal
7ExprTuple9
8Lambdaparameter: 39
body: 10
9Lambdaparameter: 39
body: 11
10Conditionalvalue: 12
condition: 14
11Conditionalvalue: 13
condition: 14
12Operationoperator: 23
operands: 15
13Operationoperator: 23
operands: 16
14Operationoperator: 17
operands: 18
15ExprTuple28, 19
16ExprTuple20, 27
17Literal
18ExprTuple39, 21
19Operationoperator: 23
operands: 22
20Operationoperator: 23
operands: 24
21Operationoperator: 25
operands: 26
22ExprTuple29, 27
23Literal
24ExprTuple28, 29
25Literal
26ExprTuple30, 31
27Operationoperator: 32
operands: 33
28Variable
29Variable
30Literal
31Literal
32Literal
33ExprTuple34, 35, 36
34Variable
35Operationoperator: 37
operand: 39
36Variable
37Variable
38ExprTuple39
39Variable