| step type | requirements | statement |
0 | instantiation | 1, 2 | , , , , ⊢ |
| : , : |
1 | reference | 27 | ⊢ |
2 | modus ponens | 3, 4 | , , , , ⊢ |
3 | instantiation | 5, 33, 6, 11 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
4 | generalization | 7 | , , , , ⊢ |
5 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
6 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
7 | instantiation | 19, 8, 9 | , , , , , ⊢ |
| : , : , : |
8 | instantiation | 10, 11, 12, 13 | , , , , , ⊢ |
| : , : , : , : |
9 | instantiation | 14, 15, 16, 17 | , , , , , ⊢ |
| : , : , : , : |
10 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
11 | instantiation | 18, 42, 21, 34 | ⊢ |
| : , : , : |
12 | instantiation | 19, 32, 39 | , ⊢ |
| : , : , : |
13 | instantiation | 20, 42, 21, 34, 22, 35, 36, 37 | , , , ⊢ |
| : , : , : , : |
14 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
15 | instantiation | 23, 24, 25 | , , , , , ⊢ |
| : , : , : |
16 | instantiation | 26 | ⊢ |
| : |
17 | instantiation | 27, 28 | , ⊢ |
| : , : |
18 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
19 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
21 | instantiation | 29 | ⊢ |
| : , : , : |
22 | instantiation | 29 | ⊢ |
| : , : , : |
23 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
24 | instantiation | 38, 30 | , ⊢ |
| : , : , : |
25 | instantiation | 31, 32, 33, 34, 35, 36, 37 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
26 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
27 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
28 | instantiation | 38, 39 | , ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
30 | instantiation | 38, 39 | , ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
32 | instantiation | 40, 51, 53 | , ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
34 | instantiation | 41, 42 | ⊢ |
| : |
35 | assumption | | ⊢ |
36 | instantiation | 43, 44 | , ⊢ |
| : |
37 | assumption | | ⊢ |
38 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
39 | instantiation | 45, 46, 47 | , ⊢ |
| : , : |
40 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
41 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
43 | assumption | | ⊢ |
44 | instantiation | 48, 49, 50 | ⊢ |
| : |
45 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
46 | instantiation | 68, 52, 51 | ⊢ |
| : , : , : |
47 | instantiation | 68, 52, 53 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
49 | instantiation | 68, 54, 66 | ⊢ |
| : , : , : |
50 | instantiation | 55, 56 | ⊢ |
| : , : |
51 | assumption | | ⊢ |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
53 | assumption | | ⊢ |
54 | instantiation | 57, 64, 65 | ⊢ |
| : , : |
55 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
56 | instantiation | 58, 59, 60 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
58 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
59 | instantiation | 61, 62 | ⊢ |
| : |
60 | instantiation | 63, 64, 65, 66 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
64 | instantiation | 68, 69, 67 | ⊢ |
| : , : , : |
65 | instantiation | 68, 69, 70 | ⊢ |
| : , : , : |
66 | assumption | | ⊢ |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
68 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |