logo

Expression of type Implies

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, beta, fi, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals, Forall, Implies, InSet
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Interval(two, four)
sub_expr2 = TensorProd(x, fi, y)
sub_expr3 = InSet(i, sub_expr1)
sub_expr4 = ScalarMult(ScalarMult(gamma, beta), sub_expr2)
sub_expr5 = ScalarMult(gamma, ScalarMult(beta, sub_expr2))
expr = Implies(Forall(instance_param_or_params = [i], instance_expr = Equals(sub_expr5, sub_expr4), domain = sub_expr1), Equals(Lambda(i, Conditional(sub_expr5, sub_expr3)), Lambda(i, Conditional(sub_expr4, sub_expr3))).with_wrapping_at(2)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[\forall_{i \in \{2~\ldotp \ldotp~4\}}~\left(\left(\gamma \cdot \left(\beta \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)\right) = \left(\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)\right)\right] \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left[i \mapsto \left\{\gamma \cdot \left(\beta \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] =  \\ \left[i \mapsto \left\{\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] \end{array} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 8
4Operationoperator: 16
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 10
8Lambdaparameter: 44
body: 11
9Lambdaparameter: 44
body: 12
10Lambdaparameter: 44
body: 13
11Conditionalvalue: 14
condition: 15
12Conditionalvalue: 20
condition: 15
13Conditionalvalue: 21
condition: 15
14Operationoperator: 16
operands: 17
15Operationoperator: 18
operands: 19
16Literal
17ExprTuple20, 21
18Literal
19ExprTuple44, 22
20Operationoperator: 32
operands: 23
21Operationoperator: 32
operands: 24
22Operationoperator: 25
operands: 26
23ExprTuple35, 27
24ExprTuple28, 34
25Literal
26ExprTuple29, 30
27Operationoperator: 32
operands: 31
28Operationoperator: 32
operands: 33
29Literal
30Literal
31ExprTuple36, 34
32Literal
33ExprTuple35, 36
34Operationoperator: 37
operands: 38
35Variable
36Variable
37Literal
38ExprTuple39, 40, 41
39Variable
40Operationoperator: 42
operand: 44
41Variable
42Variable
43ExprTuple44
44Variable