| | step type | requirements | statement |
| 0 | modus ponens | 1, 2 | , , , , ⊢  |
| 1 | instantiation | 3, 31, 4, 9 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 2 | generalization | 5 | , , , , ⊢  |
| 3 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 4 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 5 | instantiation | 17, 6, 7 | , , , , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 8, 9, 10, 11 | , , , , , ⊢  |
| | : , : , : , :  |
| 7 | instantiation | 12, 13, 14, 15 | , , , , , ⊢  |
| | : , : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 9 | instantiation | 16, 40, 19, 32 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 17, 30, 37 | , ⊢  |
| | : , : , :  |
| 11 | instantiation | 18, 40, 19, 32, 20, 33, 34, 35 | , , , ⊢  |
| | : , : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 13 | instantiation | 21, 22, 23 | , , , , , ⊢  |
| | : , : , :  |
| 14 | instantiation | 24 | ⊢  |
| | :  |
| 15 | instantiation | 25, 26 | , ⊢  |
| | : , :  |
| 16 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 17 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 18 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 19 | instantiation | 27 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 27 | ⊢  |
| | : , : , :  |
| 21 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 22 | instantiation | 36, 28 | , ⊢  |
| | : , : , :  |
| 23 | instantiation | 29, 30, 31, 32, 33, 34, 35 | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 24 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 25 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 26 | instantiation | 36, 37 | , ⊢  |
| | : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 28 | instantiation | 36, 37 | , ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 30 | instantiation | 38, 49, 51 | , ⊢  |
| | : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 32 | instantiation | 39, 40 | ⊢  |
| | :  |
| 33 | assumption | | ⊢  |
| 34 | instantiation | 41, 42 | , ⊢  |
| | :  |
| 35 | assumption | | ⊢  |
| 36 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 37 | instantiation | 43, 44, 45 | , ⊢  |
| | : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 39 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 41 | assumption | | ⊢  |
| 42 | instantiation | 46, 47, 48 | ⊢  |
| | :  |
| 43 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 44 | instantiation | 66, 50, 49 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 66, 50, 51 | ⊢  |
| | : , : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 47 | instantiation | 66, 52, 64 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 53, 54 | ⊢  |
| | : , :  |
| 49 | assumption | | ⊢  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 51 | assumption | | ⊢  |
| 52 | instantiation | 55, 62, 63 | ⊢  |
| | : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 54 | instantiation | 56, 57, 58 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 56 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 57 | instantiation | 59, 60 | ⊢  |
| | :  |
| 58 | instantiation | 61, 62, 63, 64 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 62 | instantiation | 66, 67, 65 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 66, 67, 68 | ⊢  |
| | : , : , :  |
| 64 | assumption | | ⊢  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 66 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 67 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |