| step type | requirements | statement |
0 | modus ponens | 1, 2 | , , , , ⊢ |
1 | instantiation | 3, 31, 4, 9 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
2 | generalization | 5 | , , , , ⊢ |
3 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
5 | instantiation | 17, 6, 7 | , , , , , ⊢ |
| : , : , : |
6 | instantiation | 8, 9, 10, 11 | , , , , , ⊢ |
| : , : , : , : |
7 | instantiation | 12, 13, 14, 15 | , , , , , ⊢ |
| : , : , : , : |
8 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
9 | instantiation | 16, 40, 19, 32 | ⊢ |
| : , : , : |
10 | instantiation | 17, 30, 37 | , ⊢ |
| : , : , : |
11 | instantiation | 18, 40, 19, 32, 20, 33, 34, 35 | , , , ⊢ |
| : , : , : , : |
12 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
13 | instantiation | 21, 22, 23 | , , , , , ⊢ |
| : , : , : |
14 | instantiation | 24 | ⊢ |
| : |
15 | instantiation | 25, 26 | , ⊢ |
| : , : |
16 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
17 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
18 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
19 | instantiation | 27 | ⊢ |
| : , : , : |
20 | instantiation | 27 | ⊢ |
| : , : , : |
21 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
22 | instantiation | 36, 28 | , ⊢ |
| : , : , : |
23 | instantiation | 29, 30, 31, 32, 33, 34, 35 | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
24 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
25 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
26 | instantiation | 36, 37 | , ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
28 | instantiation | 36, 37 | , ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
30 | instantiation | 38, 49, 51 | , ⊢ |
| : , : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
32 | instantiation | 39, 40 | ⊢ |
| : |
33 | assumption | | ⊢ |
34 | instantiation | 41, 42 | , ⊢ |
| : |
35 | assumption | | ⊢ |
36 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
37 | instantiation | 43, 44, 45 | , ⊢ |
| : , : |
38 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
39 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
41 | assumption | | ⊢ |
42 | instantiation | 46, 47, 48 | ⊢ |
| : |
43 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
44 | instantiation | 66, 50, 49 | ⊢ |
| : , : , : |
45 | instantiation | 66, 50, 51 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
47 | instantiation | 66, 52, 64 | ⊢ |
| : , : , : |
48 | instantiation | 53, 54 | ⊢ |
| : , : |
49 | assumption | | ⊢ |
50 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
51 | assumption | | ⊢ |
52 | instantiation | 55, 62, 63 | ⊢ |
| : , : |
53 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
54 | instantiation | 56, 57, 58 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
56 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
57 | instantiation | 59, 60 | ⊢ |
| : |
58 | instantiation | 61, 62, 63, 64 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
62 | instantiation | 66, 67, 65 | ⊢ |
| : , : , : |
63 | instantiation | 66, 67, 68 | ⊢ |
| : , : , : |
64 | assumption | | ⊢ |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
66 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |