logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, beta, fi, gamma, i
from proveit.linear_algebra import ScalarMult
from proveit.logic import Equals, InSet
from proveit.numbers import Interval, Mult, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = InSet(i, Interval(two, four))
expr = Equals(Conditional(ScalarMult(ScalarMult(gamma, beta), fi), sub_expr1), Conditional(ScalarMult(Mult(gamma, beta), fi), sub_expr1)).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left\{\left(\gamma \cdot \beta\right) \cdot f\left(i\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right.. \\  = \left\{\left(\gamma \cdot \beta\right) \cdot f\left(i\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right.. \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Conditionalvalue: 5
condition: 7
4Conditionalvalue: 6
condition: 7
5Operationoperator: 16
operands: 8
6Operationoperator: 16
operands: 9
7Operationoperator: 10
operands: 11
8ExprTuple12, 14
9ExprTuple13, 14
10Literal
11ExprTuple25, 15
12Operationoperator: 16
operands: 18
13Operationoperator: 17
operands: 18
14Operationoperator: 19
operand: 25
15Operationoperator: 21
operands: 22
16Literal
17Literal
18ExprTuple23, 24
19Variable
20ExprTuple25
21Literal
22ExprTuple26, 27
23Variable
24Variable
25Variable
26Literal
27Literal