PyNucleus_nl package
Submodules
PyNucleus_nl.clusterMethodCy module
- class PyNucleus_nl.clusterMethodCy.DistributedH2Matrix_globalData(LinearOperator localMat, comm)
Bases:
LinearOperator
Distributed H2 matrix, operating on global vectors
- __init__(*args, **kwargs)
- diagonal
- getMemorySize(self)
- localMat
localMat: PyNucleus_base.linear_operators.LinearOperator
- class PyNucleus_nl.clusterMethodCy.DistributedH2Matrix_localData(H2Matrix localMat, list Pnear, Comm comm, DoFMap dm, DoFMap local_dm, CSR_LinearOperator lclR, CSR_LinearOperator lclP)
Bases:
LinearOperator
Distributed H2 matrix, operating on local vectors
- Pnear
Pnear: list
- __init__(*args, **kwargs)
- comm
comm: mpi4py.MPI.Comm
- convert(self) tuple
- diagonal
- dm
dm: PyNucleus_fem.DoFMaps.DoFMap
- lclP
lclP: PyNucleus_base.linear_operators.LinearOperator
- lclR
lclR: PyNucleus_base.linear_operators.LinearOperator
- lclRoot
lclRoot: PyNucleus_nl.clusterMethodCy.tree_node
- lcl_dm
lcl_dm: PyNucleus_fem.DoFMaps.DoFMap
- localMat
localMat: PyNucleus_nl.clusterMethodCy.H2Matrix
- class PyNucleus_nl.clusterMethodCy.DistributedLinearOperator(CSR_LinearOperator localMat, tree_node tree, list Pnear, Comm comm, DoFMap dm, DoFMap local_dm, CSR_LinearOperator lclR, CSR_LinearOperator lclP)
Bases:
LinearOperator
Distributed linear operator, operating on local vectors
- Pnear
Pnear: list
- __init__(*args, **kwargs)
- comm
comm: mpi4py.MPI.Comm
- convert(self) tuple
- diagonal
- dm
dm: PyNucleus_fem.DoFMaps.DoFMap
- getMemorySize(self)
- lclP
lclP: PyNucleus_base.linear_operators.LinearOperator
- lclR
lclR: PyNucleus_base.linear_operators.LinearOperator
- lclRoot
lclRoot: PyNucleus_nl.clusterMethodCy.tree_node
- lcl_dm
lcl_dm: PyNucleus_fem.DoFMaps.DoFMap
- localMat
localMat: PyNucleus_base.linear_operators.CSR_LinearOperator
- tree
tree: PyNucleus_nl.clusterMethodCy.tree_node
- class PyNucleus_nl.clusterMethodCy.H2Matrix(tree_node tree, dict Pfar, LinearOperator Anear, FakePLogger PLogger=None)
Bases:
LinearOperator
- Anear
Anear: PyNucleus_base.linear_operators.LinearOperator
- static HDF5read(node, returnPnear=False)
- HDF5write(self, node, version=2, Pnear=None)
- PLogger
PLogger: PyNucleus_base.performanceLogger.FakePLogger
- Pfar
Pfar: dict
- __init__(*args, **kwargs)
- basis
basis: PyNucleus_base.linear_operators.LinearOperator
- cluster_size
- compressionRatio
- constructBasis(self)
- diagonal
- getMemorySize(self)
- isSparse(self)
- leafCoefficientsUp
leafCoefficientsUp: ‘REAL_t[::1]’
- nearField_size
- num_far_field_cluster_pairs
- plot(self, Pnear=[], fill='box', nearFieldColor='red', farFieldColor='blue', kernelApproximationColor='yellow', shiftCoefficientColor='red', rankColor=None)
- skip_leaves_upward
skip_leaves_upward: ‘BOOL_t’
- toarray(self)
- tree
tree: PyNucleus_nl.clusterMethodCy.tree_node
- tree_size
- class PyNucleus_nl.clusterMethodCy.VectorH2Matrix(tree_node tree, dict Pfar, VectorLinearOperator Anear, FakePLogger PLogger=None)
Bases:
VectorLinearOperator
- Anear
Anear: PyNucleus_base.linear_operators.VectorLinearOperator
- static HDF5read(node, returnPnear=False)
- HDF5write(self, node, version=2, Pnear=None)
- PLogger
PLogger: PyNucleus_base.performanceLogger.FakePLogger
- Pfar
Pfar: dict
- __init__(*args, **kwargs)
- basis
basis: PyNucleus_base.linear_operators.LinearOperator
- cluster_size
- constructBasis(self)
- diagonal
- getMemorySize(self)
- isSparse(self)
- leafCoefficientsUp
leafCoefficientsUp: ‘REAL_t[::1]’
- nearField_size
- num_far_field_cluster_pairs
- plot(self, Pnear=[], fill='box', nearFieldColor='red', farFieldColor='blue', kernelApproximationColor='yellow', shiftCoefficientColor='red', rankColor=None)
- skip_leaves_upward
skip_leaves_upward: ‘BOOL_t’
- toarray(self)
- tree
tree: PyNucleus_nl.clusterMethodCy.tree_node
- tree_size
- PyNucleus_nl.clusterMethodCy.assembleFarFieldInteractions(Kernel kernel, dict Pfar, BOOL_t bemMode=False)
- PyNucleus_nl.clusterMethodCy.checkNearFarFields(DoFMap dm, list Pnear, dict Pfar) INDEX_t[:, ::1]
- class PyNucleus_nl.clusterMethodCy.exactSphericalIntegral2D(REAL_t[::1] u, P1_DoFMap dm, REAL_t radius)
Bases:
function
- __init__(*args, **kwargs)
- root
root: PyNucleus_nl.clusterMethodCy.tree_node
- class PyNucleus_nl.clusterMethodCy.farFieldClusterPair(tree_node n1, tree_node n2)
Bases:
object
- __init__(*args, **kwargs)
- apply(self, REAL_t[::1] x, REAL_t[::1] y) void
- applyTrans(self, REAL_t[::1] x, REAL_t[::1] y) void
- applyVec(self, REAL_t[::1] x, REAL_t[:, ::1] y) void
- applyVecTrans(self, REAL_t[::1] x, REAL_t[:, ::1] y) void
- kernelInterpolant
kernelInterpolant: ‘REAL_t[:, ::1]’
- kernelInterpolantVec
kernelInterpolantVec: ‘REAL_t[:, :, ::1]’
- n1
n1: PyNucleus_nl.clusterMethodCy.tree_node
- n2
n2: PyNucleus_nl.clusterMethodCy.tree_node
- plot(self, color='blue')
- PyNucleus_nl.clusterMethodCy.getAdmissibleClusters(Kernel kernel, tree_node n1, tree_node n2, dict Pfar=None, list Pnear=None, INDEX_t level=0) BOOL_t
- PyNucleus_nl.clusterMethodCy.getCoveringClusters(Kernel kernel, tree_node n1, tree_node n2, refinementParams refParams, list Pnear=None, INDEX_t level=0) BOOL_t
- PyNucleus_nl.clusterMethodCy.getDoFBoxesAndCells(meshBase mesh, DoFMap dm, comm=None)
- PyNucleus_nl.clusterMethodCy.getFractionalOrders(variableFractionalOrder s, meshBase mesh)
- class PyNucleus_nl.clusterMethodCy.productIterator(INDEX_t m, INDEX_t dim)
Bases:
object
- __init__(*args, **kwargs)
- PyNucleus_nl.clusterMethodCy.queryAdmissibility(Kernel kernel, tree_node n1, tree_node n2) admissibilityType
- PyNucleus_nl.clusterMethodCy.symmetrizeNearFieldClusters(list Pnear)
- class PyNucleus_nl.clusterMethodCy.transferMatrixBuilder(INDEX_t dim)
Bases:
object
- __init__(*args, **kwargs)
- class PyNucleus_nl.clusterMethodCy.tree_node(tree_node parent, indexSet dofs, REAL_t[:, :, ::1] boxes, REAL_t[:, ::1] coords, REAL_t[::1] hVector, refinementParams refParams, bool mixed_node=False, bool canBeAssembled=True, indexSet local_dofs=None)
Bases:
object
- static HDF5read(node)
- static HDF5readNew(node)
- HDF5write(self, node)
- HDF5writeNew(self, node)
- __init__(*args, **kwargs)
- box
box: ‘REAL_t[:, ::1]’
- boxes
boxes: ‘REAL_t[:, :, ::1]’
- canBeAssembled
canBeAssembled: ‘BOOL_t’
- cells
- children
children: list
- coefficientsDown
coefficientsDown: ‘REAL_t[::1]’
- coefficientsDownVec
coefficientsDownVec: ‘REAL_t[:, ::1]’
- coefficientsUp
coefficientsUp: ‘REAL_t[::1]’
- coefficientsUpOffset
coefficientsUpOffset: ‘INDEX_t’
- constructBasisMatrix(self, LinearOperator B, REAL_t[::1] coefficientsUp, INDEX_t offset=0)
- coords
coords: ‘REAL_t[:, ::1]’
- dim
dim: ‘INDEX_t’
- distFromRoot
distFromRoot: ‘INDEX_t’
- dofs
- downwardPass_py(self, REAL_t[::1] y, INDEX_t componentNo=0)
- enterLeafValues(self, DoFMap dm, BOOL_t local=False)
- enterLeafValuesGrad(self, meshBase mesh, DoFMap dm, REAL_t[:, :, ::1] boxes, comm=None)
- findCell(self, meshBase mesh, REAL_t[::1] vertex, REAL_t[:, ::1] simplex, REAL_t[::1] bary) INDEX_t
- findCells(self, meshBase mesh, REAL_t[::1] vertex, REAL_t r, REAL_t[:, ::1] simplex) set
- findNodeForDoF(self, INDEX_t dof)
- getMemorySize(self)
- getNumLeavesOnLevel(self, INDEX_t level)
- getNumNodesOnLevel(self, INDEX_t level)
- getParent(self, INDEX_t parentLevel=0)
- get_irregularLevelsOffset(self)
- get_is_leaf_py(self)
- get_max_id(self)
- get_nodes(self)
- get_tree_nodes(self)
- get_tree_nodes_on_level(self, INDEX_t level)
- get_tree_nodes_up_to_level(self, INDEX_t level)
- hVector
hVector: ‘REAL_t[::1]’
- hmin
hmin: ‘REAL_t’
- id
id: ‘INDEX_t’
- idsAreUnique(self, bitArray used=None)
- interpolation_order
interpolation_order: ‘INDEX_t’
- property irregularLevelsOffset
tree_node.get_irregularLevelsOffset(self)
- property isLeaf
tree_node.get_is_leaf_py(self)
- leaves(self)
- levelNo
levelNo: ‘INDEX_t’
- local_dofs
- mixed_node
mixed_node: ‘BOOL_t’
- property nodes
tree_node.get_nodes(self)
- property numLevels
tree_node._getLevels_py(self)
- num_dofs
- parent
parent: PyNucleus_nl.clusterMethodCy.tree_node
- partition(self, DoFMap dm, Comm comm, BOOL_t canBeAssembled, BOOL_t mixed_node, dict params={})
- plot(self, level=0, plotType='box', DoFMap dm=None, BOOL_t recurse=False, BOOL_t printClusterIds=False, BOOL_t printNumDoFs=False, transferOperatorColor='purple', coefficientsColor='red', horizontal=True, levelSkip=1, skip_angle=0.)
- prepareTransferOperators_py(self, INDEX_t valueSize)
- refParams
refParams: ‘refinementParams’
- refine(self, BOOL_t recursive=True)
- relabelDoFs(self, INDEX_t[::1] translate) void
- resetCoefficientsDown_py(self, BOOL_t vecValued=False)
- resetCoefficientsUp_py(self)
- secondary_dofs
secondary_dofs: PyNucleus_base.tupleDict.indexSet
- set_id(self, INDEX_t maxID=0, INDEX_t distFromRoot=0)
- set_irregularLevelsOffset(self, INDEX_t irregularLevelsOffset)
- transferOperator
transferOperator: ‘REAL_t[:, ::1]’
- upwardPass_py(self, REAL_t[::1] x, INDEX_t componentNo=0, BOOL_t skip_leaves=False)
- value
value: ‘REAL_t[:, :, ::1]’
- PyNucleus_nl.clusterMethodCy.trimTree(tree_node tree, list Pnear, dict Pfar, comm, keep=[])
PyNucleus_nl.config module
PyNucleus_nl.fractionalLaplacian1D module
- class PyNucleus_nl.fractionalLaplacian1D.fractionalLaplacian1D(Kernel kernel, meshBase mesh, DoFMap dm, quad_order_diagonal=None, target_order=None, num_dofs=None, **kwargs)
Bases:
nonlocalLaplacian1D
The local stiffness matrix
\[\int_{K_1}\int_{K_2} (u(x)-u(y)) (v(x)-v(y)) \gamma(x,y) dy dx\]for the symmetric 1D nonlocal Laplacian.
- __init__(*args, **kwargs)
- qrId
qrId: PyNucleus_fem.quadrature.quadratureRule
- qrVertex
qrVertex: PyNucleus_fem.quadrature.quadratureRule
- setKernel(self, Kernel kernel, quad_order_diagonal=None, target_order=None) void
- class PyNucleus_nl.fractionalLaplacian1D.fractionalLaplacian1DZeroExterior(Kernel kernel, meshBase mesh, DoFMap dm, num_dofs=None, **kwargs)
Bases:
nonlocalLaplacian1D
- PHI_dist
PHI_dist: ‘REAL_t[:, ::1]’
- PHI_sep
PHI_sep: ‘REAL_t[:, ::1]’
- PHI_vertex
PHI_vertex: ‘REAL_t[:, ::1]’
- __init__(*args, **kwargs)
- qrVertex
qrVertex: PyNucleus_fem.quadrature.quadratureRule
- class PyNucleus_nl.fractionalLaplacian1D.fractionalLaplacian1D_boundary(Kernel kernel, meshBase mesh, DoFMap dm, quad_order_diagonal=None, target_order=None, num_dofs=None, **kwargs)
Bases:
fractionalLaplacian1DZeroExterior
The local stiffness matrix
\[\int_{K}\int_{e} [ u(x) v(x) n_{y} \cdot \frac{x-y}{|x-y|} \Gamma(x,y) dy dx\]for the 1D nonlocal Laplacian.
- __init__(*args, **kwargs)
- setKernel(self, Kernel kernel, quad_order_diagonal=None, target_order=None) void
- class PyNucleus_nl.fractionalLaplacian1D.fractionalLaplacian1D_nonsym(Kernel kernel, meshBase mesh, DoFMap dm, target_order=None, quad_order_diagonal=None, num_dofs=None, **kwargs)
Bases:
fractionalLaplacian1D
The local stiffness matrix
\[\int_{K_1}\int_{K_2} [ u(x) \gamma(x,y) - u(y) \gamma(y,x) ] [ v(x)-v(y) ] dy dx\]for the non-symmetric 1D nonlocal Laplacian.
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalLaplacian1D.singularityCancelationQuadRule1D(panelType panel, REAL_t singularity, INDEX_t quad_order_diagonal, INDEX_t quad_order_regular)
Bases:
quadratureRule
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalLaplacian1D.singularityCancelationQuadRule1D_boundary(panelType panel, REAL_t singularity, INDEX_t quad_order_diagonal, INDEX_t quad_order_regular)
Bases:
quadratureRule
- __init__(*args, **kwargs)
PyNucleus_nl.fractionalLaplacian2D module
- class PyNucleus_nl.fractionalLaplacian2D.fractionalLaplacian2D(Kernel kernel, meshBase mesh, DoFMap dm, target_order=None, quad_order_diagonal=None, num_dofs=None, **kwargs)
Bases:
nonlocalLaplacian2D
The local stiffness matrix
\[\int_{K_1}\int_{K_2} (u(x)-u(y)) (v(x)-v(y)) \gamma(x,y) dy dx\]for the symmetric 2D nonlocal Laplacian.
- PSI_edge
PSI_edge: ‘REAL_t[:, ::1]’
- PSI_id
PSI_id: ‘REAL_t[:, ::1]’
- PSI_vertex
PSI_vertex: ‘REAL_t[:, ::1]’
- __init__(*args, **kwargs)
- qrEdge
qrEdge: PyNucleus_fem.quadrature.quadratureRule
- qrId
qrId: PyNucleus_fem.quadrature.quadratureRule
- qrVertex
qrVertex: PyNucleus_fem.quadrature.quadratureRule
- setKernel(self, Kernel kernel, quad_order_diagonal=None, target_order=None) void
- class PyNucleus_nl.fractionalLaplacian2D.fractionalLaplacian2DZeroExterior(Kernel kernel, meshBase mesh, DoFMap dm, num_dofs=None, **kwargs)
Bases:
nonlocalLaplacian2D
- PHI_edge
PHI_edge: ‘REAL_t[:, :, ::1]’
- PHI_edge2
PHI_edge2: ‘REAL_t[:, ::1]’
- PHI_vertex
PHI_vertex: ‘REAL_t[:, :, ::1]’
- PHI_vertex2
PHI_vertex2: ‘REAL_t[:, ::1]’
- PSI_edge
PSI_edge: ‘REAL_t[:, :, ::1]’
- PSI_vertex
PSI_vertex: ‘REAL_t[:, :, ::1]’
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalLaplacian2D.fractionalLaplacian2D_boundary(Kernel kernel, meshBase mesh, DoFMap dm, target_order=None, quad_order_diagonal=None, num_dofs=None, **kwargs)
Bases:
fractionalLaplacian2DZeroExterior
The local stiffness matrix
\[\int_{K}\int_{e} [ u(x) v(x) n_{y} \cdot \frac{x-y}{|x-y|} \Gamma(x,y) dy dx\]for the 2D nonlocal Laplacian.
- __init__(*args, **kwargs)
- qrEdge
qrEdge: PyNucleus_fem.quadrature.quadratureRule
- qrVertex
qrVertex: PyNucleus_fem.quadrature.quadratureRule
- qrVertex0
qrVertex0: PyNucleus_fem.quadrature.quadQuadratureRule
- qrVertex1
qrVertex1: PyNucleus_fem.quadrature.quadQuadratureRule
- setKernel(self, Kernel kernel, quad_order_diagonal=None, target_order=None) void
- class PyNucleus_nl.fractionalLaplacian2D.fractionalLaplacian2D_nonsym(Kernel kernel, meshBase mesh, DoFMap dm, target_order=None, quad_order_diagonal=None, num_dofs=None, **kwargs)
Bases:
fractionalLaplacian2D
The local stiffness matrix
\[\int_{K_1}\int_{K_2} [ u(x) \gamma(x,y) - u(y) \gamma(y,x) ] [ v(x)-v(y) ] dy dx\]for the 2D non-symmetric nonlocal Laplacian.
- PHI_edge
PHI_edge: ‘REAL_t[:, :, ::1]’
- PHI_id
PHI_id: ‘REAL_t[:, :, ::1]’
- PHI_vertex
PHI_vertex: ‘REAL_t[:, :, ::1]’
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalLaplacian2D.singularityCancelationQuadRule2D(panelType panel, REAL_t singularity, INDEX_t quad_order_diagonal, INDEX_t quad_order_diagonalV, INDEX_t quad_order_regular)
Bases:
quadratureRule
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalLaplacian2D.singularityCancelationQuadRule2D_boundary(panelType panel, REAL_t singularity, INDEX_t quad_order_diagonal, INDEX_t quad_order_regular)
Bases:
quadratureRule
- __init__(*args, **kwargs)
PyNucleus_nl.twoPointFunctions module
Defines the base class for functions of two spatial variables, e.g. kernels, fractional orders and normalizations.
- class PyNucleus_nl.twoPointFunctions.ComplexconstantTwoPoint(double complex value)
Bases:
ComplextwoPointFunction
- __init__(*args, **kwargs)
- getLongDescription(self)
- value
value: ‘double complex’
- class PyNucleus_nl.twoPointFunctions.ComplexfixedTwoPointFunction(ComplextwoPointFunction f, REAL_t[::1] point, fixed_type fixedType)
Bases:
complexFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.twoPointFunctions.ComplexlookupTwoPoint(DoFMap dm, double complex[:, ::1] A, BOOL_t symmetric, cellFinder2 cF=None)
Bases:
ComplextwoPointFunction
- __init__(*args, **kwargs)
- dm
dm: PyNucleus_fem.DoFMaps.DoFMap
- class PyNucleus_nl.twoPointFunctions.ComplexparametrizedTwoPointFunction(BOOL_t symmetric, INDEX_t valueSize)
Bases:
ComplextwoPointFunction
- __init__(*args, **kwargs)
- getParamPtrAddr(self)
- class PyNucleus_nl.twoPointFunctions.ComplexproductParametrizedTwoPoint(ComplextwoPointFunction f1, ComplextwoPointFunction f2)
Bases:
ComplexparametrizedTwoPointFunction
- __init__(*args, **kwargs)
- f1
f1: PyNucleus_nl.twoPointFunctions.ComplextwoPointFunction
- f2
f2: PyNucleus_nl.twoPointFunctions.ComplextwoPointFunction
- class PyNucleus_nl.twoPointFunctions.ComplexproductTwoPoint(ComplextwoPointFunction f1, ComplextwoPointFunction f2)
Bases:
ComplextwoPointFunction
- __init__(*args, **kwargs)
- f1
f1: PyNucleus_nl.twoPointFunctions.ComplextwoPointFunction
- f2
f2: PyNucleus_nl.twoPointFunctions.ComplextwoPointFunction
- class PyNucleus_nl.twoPointFunctions.ComplextwoPointFunction(BOOL_t symmetric, INDEX_t valueSize)
Bases:
object
- __call__(*args, **kwargs)
Call self as a function.
- __init__(*args, **kwargs)
- diagonal(self)
- fixedX(self, REAL_t[::1] x)
- fixedY(self, REAL_t[::1] y)
- getLongDescription(self)
- plot(self, mesh, **kwargs)
- symmetric
symmetric: ‘BOOL_t’
- valueSize
valueSize: ‘INDEX_t’
- class PyNucleus_nl.twoPointFunctions.constantTwoPoint(REAL_t value)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- getLongDescription(self)
- value
value: ‘REAL_t’
- class PyNucleus_nl.twoPointFunctions.fixedTwoPointFunction(twoPointFunction f, REAL_t[::1] point, fixed_type fixedType)
Bases:
function
- __init__(*args, **kwargs)
- class PyNucleus_nl.twoPointFunctions.interfaceTwoPoint(REAL_t horizon1, REAL_t horizon2, BOOL_t left, REAL_t interface=0.)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- horizon1
horizon1: ‘REAL_t’
- horizon2
horizon2: ‘REAL_t’
- interface
interface: ‘REAL_t’
- left
left: ‘BOOL_t’
- class PyNucleus_nl.twoPointFunctions.inverseTwoPoint(twoPointFunction f)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.twoPointFunctions.lambdaTwoPoint(fun, BOOL_t symmetric)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.twoPointFunctions.leftRightTwoPoint(REAL_t ll, REAL_t rr, REAL_t lr=np.nan, REAL_t rl=np.nan, REAL_t interface=0.)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- interface
interface: ‘REAL_t’
- ll
ll: ‘REAL_t’
- lr
lr: ‘REAL_t’
- rl
rl: ‘REAL_t’
- rr
rr: ‘REAL_t’
- class PyNucleus_nl.twoPointFunctions.lookupTwoPoint(DoFMap dm, REAL_t[:, ::1] A, BOOL_t symmetric, cellFinder2 cF=None)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- dm
dm: PyNucleus_fem.DoFMaps.DoFMap
- class PyNucleus_nl.twoPointFunctions.matrixTwoPoint(REAL_t[:, ::1] mat)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- mat
mat: ‘REAL_t[:, ::1]’
- class PyNucleus_nl.twoPointFunctions.parametrizedTwoPointFunction(BOOL_t symmetric, INDEX_t valueSize)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- getParamPtrAddr(self)
- class PyNucleus_nl.twoPointFunctions.productParametrizedTwoPoint(twoPointFunction f1, twoPointFunction f2)
Bases:
parametrizedTwoPointFunction
- __init__(*args, **kwargs)
- f1
f1: PyNucleus_nl.twoPointFunctions.twoPointFunction
- f2
f2: PyNucleus_nl.twoPointFunctions.twoPointFunction
- class PyNucleus_nl.twoPointFunctions.productTwoPoint(twoPointFunction f1, twoPointFunction f2)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- f1
f1: PyNucleus_nl.twoPointFunctions.twoPointFunction
- f2
f2: PyNucleus_nl.twoPointFunctions.twoPointFunction
- class PyNucleus_nl.twoPointFunctions.smoothedLeftRightTwoPoint(REAL_t vl, REAL_t vr, REAL_t r=0.1, REAL_t slope=200.)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- fac
fac: ‘REAL_t’
- r
r: ‘REAL_t’
- slope
slope: ‘REAL_t’
- vl
vl: ‘REAL_t’
- vr
vr: ‘REAL_t’
- class PyNucleus_nl.twoPointFunctions.temperedTwoPoint(REAL_t lambdaCoeff, INDEX_t dim)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- dim
dim: ‘INDEX_t’
- lambdaCoeff
lambdaCoeff: ‘REAL_t’
- class PyNucleus_nl.twoPointFunctions.tensorTwoPoint(INDEX_t i, INDEX_t j, INDEX_t dim)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.twoPointFunctions.twoPointFunction(BOOL_t symmetric, INDEX_t valueSize)
Bases:
object
- __call__(*args, **kwargs)
Call self as a function.
- __init__(*args, **kwargs)
- diagonal(self)
- fixedX(self, REAL_t[::1] x)
- fixedY(self, REAL_t[::1] y)
- getLongDescription(self)
- plot(self, mesh, **kwargs)
- symmetric
symmetric: ‘BOOL_t’
- valueSize
valueSize: ‘INDEX_t’
- class PyNucleus_nl.twoPointFunctions.unsymTwoPoint(REAL_t l, REAL_t r)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- l
l: ‘REAL_t’
- r
r: ‘REAL_t’
PyNucleus_nl.fractionalOrders module
Defines classes for constant and space dependent fractional orders.
- class PyNucleus_nl.fractionalOrders.constFractionalOrder(REAL_t s)
Bases:
fractionalOrderBase
- __init__(*args, **kwargs)
- value
value: ‘REAL_t’
- class PyNucleus_nl.fractionalOrders.constantExtended(REAL_t value)
Bases:
extendedFunction
- __init__(*args, **kwargs)
- value
value: ‘REAL_t’
- class PyNucleus_nl.fractionalOrders.constantNonSymFractionalOrder(REAL_t s)
Bases:
singleVariableUnsymmetricFractionalOrder
- __init__(*args, **kwargs)
- value
value: ‘REAL_t’
- class PyNucleus_nl.fractionalOrders.feFractionalOrder(fe_vector vec, REAL_t smin, REAL_t smax)
Bases:
singleVariableUnsymmetricFractionalOrder
- __init__(*args, **kwargs)
- vec
vec: PyNucleus_fem.DoFMaps.fe_vector
- class PyNucleus_nl.fractionalOrders.fractionalOrderBase(REAL_t smin, REAL_t smax, BOOL_t symmetric, INDEX_t numParameters=1)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- evalGrad_py(self, REAL_t[::1] x, REAL_t[::1] y, REAL_t[::1] grad)
- max
max: ‘REAL_t’
- min
min: ‘REAL_t’
- numParameters
numParameters: ‘INDEX_t’
- class PyNucleus_nl.fractionalOrders.innerOuterFractionalOrder(INDEX_t dim, REAL_t sii, REAL_t soo, REAL_t r, REAL_t[::1] center, REAL_t sio=np.nan, REAL_t soi=np.nan)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.islandsFractionalOrder(REAL_t sii, REAL_t soo, REAL_t r, REAL_t r2, REAL_t sio=np.nan, REAL_t soi=np.nan)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.lambdaFractionalOrder(INDEX_t dim, REAL_t smin, REAL_t smax, BOOL_t symmetric, fun)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.layersFractionalOrder(INDEX_t dim, REAL_t[::1] layerBoundaries, REAL_t[:, ::1] layerOrders)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- layerBoundaries
layerBoundaries: ‘REAL_t[::1]’
- layerOrders
layerOrders: ‘REAL_t[:, ::1]’
- class PyNucleus_nl.fractionalOrders.leftRightFractionalOrder(REAL_t sll, REAL_t srr, REAL_t slr=np.nan, REAL_t srl=np.nan, REAL_t interface=0.)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.linearLeftRightFractionalOrder(REAL_t sl, REAL_t sr, REAL_t r=0.1, REAL_t interface=0.)
Bases:
singleVariableUnsymmetricFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.linearStep(REAL_t sl, REAL_t sr, REAL_t r, REAL_t interface=0.)
Bases:
extendedFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.lookupExtended(meshBase mesh, DoFMap dm, REAL_t[::1] u, cellFinder2 cF=None)
Bases:
extendedFunction
- __init__(*args, **kwargs)
- cellFinder
cellFinder: PyNucleus_fem.meshCy.cellFinder2
- dm
dm: PyNucleus_fem.DoFMaps.DoFMap
- u
u: ‘REAL_t[::1]’
- class PyNucleus_nl.fractionalOrders.piecewiseConstantFractionalOrder(INDEX_t dim, function blockIndicator, REAL_t[:, ::1] sVals)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- blockIndicator
blockIndicator: PyNucleus_fem.functions.function
- numBlocks
- class PyNucleus_nl.fractionalOrders.singleVariableTwoPointFunction(extendedFunction fun)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.singleVariableUnsymmetricFractionalOrder(extendedFunction sFun, REAL_t smin, REAL_t smax, INDEX_t numParameters=0)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- sFun
sFun: PyNucleus_nl.fractionalOrders.extendedFunction
- class PyNucleus_nl.fractionalOrders.smoothLeftRight(REAL_t sl, REAL_t sr, REAL_t r=0.1, REAL_t slope=200.)
Bases:
extendedFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.smoothStep(REAL_t sl, REAL_t sr, REAL_t r, REAL_t interface=0.)
Bases:
extendedFunction
- __init__(*args, **kwargs)
- interface
interface: ‘REAL_t’
- r
r: ‘REAL_t’
- sl
sl: ‘REAL_t’
- slope
slope: ‘REAL_t’
- sr
sr: ‘REAL_t’
- class PyNucleus_nl.fractionalOrders.smoothStepRadial(REAL_t sl, REAL_t sr, REAL_t r, REAL_t radius=0.5)
Bases:
extendedFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.smoothedInnerOuterFractionalOrder(REAL_t sl, REAL_t sr, REAL_t r=0.1, REAL_t slope=200., REAL_t radius=0.5)
Bases:
singleVariableUnsymmetricFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.smoothedLeftRightFractionalOrder(REAL_t sl, REAL_t sr, REAL_t r=0.1, REAL_t slope=200., REAL_t interface=0.)
Bases:
singleVariableUnsymmetricFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.sumFractionalOrder(variableFractionalOrder s1, REAL_t fac1, variableFractionalOrder s2, REAL_t fac2)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- class PyNucleus_nl.fractionalOrders.variableConstFractionalOrder(REAL_t s)
Bases:
variableFractionalOrder
- __init__(*args, **kwargs)
- value
value: ‘REAL_t’
- class PyNucleus_nl.fractionalOrders.variableFractionalOrder(REAL_t smin, REAL_t smax, BOOL_t symmetric, INDEX_t numParameters=1)
Bases:
fractionalOrderBase
- __init__(*args, **kwargs)
PyNucleus_nl.kernelNormalization module
Defines normalizations for different types of kernels.
- class PyNucleus_nl.kernelNormalization.constantFractionalLaplacianScaling(INDEX_t dim, REAL_t s, REAL_t horizon, REAL_t tempered)
Bases:
constantTwoPoint
- __init__(*args, **kwargs)
- getLongDescription(self)
- class PyNucleus_nl.kernelNormalization.constantFractionalLaplacianScalingBoundary
Bases:
constantTwoPoint
- class PyNucleus_nl.kernelNormalization.constantFractionalLaplacianScalingDerivative(INDEX_t dim, REAL_t s, REAL_t horizon, BOOL_t normalized, BOOL_t boundary, INDEX_t derivative, REAL_t tempered)
Bases:
twoPointFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.kernelNormalization.constantIntegrableScaling(kernelType kType, interactionDomain interaction, INDEX_t dim, REAL_t horizon, REAL_t gaussian_variance=1.0, REAL_t exponentialRate=1.0)
Bases:
constantTwoPoint
- __init__(*args, **kwargs)
- getLongDescription(self)
- class PyNucleus_nl.kernelNormalization.memoizedDigamma
Bases:
memoizedFun
- class PyNucleus_nl.kernelNormalization.memoizedFun
Bases:
object
- __call__(*args, **kwargs)
Call self as a function.
- __init__(*args, **kwargs)
- stats(self)
- class PyNucleus_nl.kernelNormalization.variableFractionalLaplacianScaling(BOOL_t symmetric, BOOL_t normalized=True, BOOL_t boundary=False, INDEX_t derivative=0)
Bases:
parametrizedTwoPointFunction
- __init__(*args, **kwargs)
- getLongDescription(self)
- getScalingWithDifferentHorizon(self)
- class PyNucleus_nl.kernelNormalization.variableFractionalLaplacianScalingBoundary
Bases:
parametrizedTwoPointFunction
- class PyNucleus_nl.kernelNormalization.variableFractionalLaplacianScalingWithDifferentHorizon(BOOL_t symmetric, BOOL_t normalized, BOOL_t boundary, INDEX_t derivative, function horizonFun)
Bases:
variableFractionalLaplacianScaling
- __init__(*args, **kwargs)
- class PyNucleus_nl.kernelNormalization.variableIntegrableScaling(kernelType kType, interactionDomain interaction)
Bases:
parametrizedTwoPointFunction
- __init__(*args, **kwargs)
- getScalingWithDifferentHorizon(self)
- class PyNucleus_nl.kernelNormalization.variableIntegrableScalingWithDifferentHorizon(kernelType kType, interactionDomain interaction, function horizonFun)
Bases:
variableIntegrableScaling
- __init__(*args, **kwargs)
PyNucleus_nl.interactionDomains module
Defines different types of interaction domains.
- class PyNucleus_nl.interactionDomains.ball1_barycenter(function horizonFun)
Bases:
linearTransformInteraction
l1 ball interaction domain
- __init__(*args, **kwargs)
- getLongDescription(self)
- class PyNucleus_nl.interactionDomains.ball1_retriangulation(function horizonFun)
Bases:
linearTransformInteraction
l1 ball interaction domain
- __init__(*args, **kwargs)
- getLongDescription(self)
- class PyNucleus_nl.interactionDomains.ball2Complement(function horizonFun)
Bases:
retriangulationDomain
- __init__(*args, **kwargs)
- getComplement(self)
- getLongDescription(self)
- class PyNucleus_nl.interactionDomains.ball2_barycenter(function horizonFun)
Bases:
barycenterDomain
l2 ball interaction domain
- __init__(*args, **kwargs)
- getComplement(self)
- getLongDescription(self)
- get_Surface(self, REAL_t[::1] node1)
- class PyNucleus_nl.interactionDomains.ball2_dilation_barycenter(sqrtAffineFunction horizonFun)
Bases:
barycenterDomain
- __init__(*args, **kwargs)
- getLongDescription(self)
- get_Surface(self, REAL_t[::1] node1)
- class PyNucleus_nl.interactionDomains.ball2_dilation_retriangulation(sqrtAffineFunction horizonFun)
Bases:
retriangulationDomain
- __init__(*args, **kwargs)
- getLongDescription(self)
- get_Surface(self, REAL_t[::1] node1)
- class PyNucleus_nl.interactionDomains.ball2_retriangulation(function horizonFun)
Bases:
retriangulationDomain
l2 ball interaction domain
- __init__(*args, **kwargs)
- getComplement(self)
- getLongDescription(self)
- get_Surface(self, REAL_t[::1] node1)
- class PyNucleus_nl.interactionDomains.ballInf_barycenter(function horizonFun)
Bases:
barycenterDomain
l-inf ball interaction domain
- __init__(*args, **kwargs)
- getLongDescription(self)
- get_Surface(self, REAL_t[::1] node1)
- class PyNucleus_nl.interactionDomains.ballInf_retriangulation(function horizonFun)
Bases:
retriangulationDomain
l-inf ball interaction domain
- __init__(*args, **kwargs)
- getLongDescription(self)
- get_Surface(self, REAL_t[::1] node1)
- class PyNucleus_nl.interactionDomains.barycenterDomain(function horizonFun, BOOL_t isComplement, BOOL_t symmetric)
Bases:
interactionDomain
- __init__(*args, **kwargs)
- class PyNucleus_nl.interactionDomains.ellipseTransform(function a, function b, function theta)
Bases:
matrixFunction
- __init__(*args, **kwargs)
- class PyNucleus_nl.interactionDomains.ellipse_barycenter(function horizonFun, function a, function b, function theta)
Bases:
linearTransformInteraction
Ellipse interaction domain
- __init__(*args, **kwargs)
- a
a: PyNucleus_fem.functions.function
- b
b: PyNucleus_fem.functions.function
- getLongDescription(self)
- theta
theta: PyNucleus_fem.functions.function
- class PyNucleus_nl.interactionDomains.ellipse_retriangulation(function horizonFun, function a, function b, function theta)
Bases:
linearTransformInteraction
Ellipse interaction domain
- __init__(*args, **kwargs)
- a
a: PyNucleus_fem.functions.function
- b
b: PyNucleus_fem.functions.function
- theta
theta: PyNucleus_fem.functions.function
- class PyNucleus_nl.interactionDomains.fullSpace
Bases:
interactionDomain
Full space interaction domain, i.e. infinite interaction horizon.
- __init__(*args, **kwargs)
- getLongDescription(self)
- class PyNucleus_nl.interactionDomains.interactionDomain(function horizonFun, BOOL_t isComplement, BOOL_t symmetric)
Bases:
parametrizedTwoPointFunction
Base class for all interaction domains.
- __init__(*args, **kwargs)
- complement
complement: ‘BOOL_t’
- dist
dist: ‘REAL_t’
- dist2
dist2: ‘REAL_t’
- getComplement(self)
- getLongDescription(self)
- getRelativePosition_py(self, REAL_t[:, ::1] simplex1, REAL_t[:, ::1] simplex2)
Returns the relative position of two simplices.
- get_Surface(self, REAL_t[::1] node1)
- horizonFun
horizonFun: PyNucleus_fem.functions.function
- nextSubSimplex_Node_py(self, REAL_t[:, ::1] A, REAL_t[::1] vol)
- nextSubSimplex_Simplex_py(self, REAL_t[:, ::1] A, REAL_t[::1] b, REAL_t[::1] vol)
- plot_Node(self, REAL_t[::1] node1, REAL_t[:, ::1] simplex2, BOOL_t plotMeshSimplex=True)
- plot_Node_Mesh(self, REAL_t[::1] node1, meshBase mesh)
- plot_Simplex(self, REAL_t[:, ::1] simplex1, REAL_t[:, ::1] simplex2, BOOL_t plotSurfaces=True)
- plot_Simplex_Mesh(self, REAL_t[:, ::1] simplex2, meshBase mesh)
- plot_Surface(self, REAL_t[::1] node1)
Plot the surface of the interaction neighborhood.
- relPos
relPos: ‘RELATIVE_POSITION_t’
- startLoopSubSimplices_Node_py(self, REAL_t[::1] node1, REAL_t[:, ::1] simplex2)
- startLoopSubSimplices_Simplex_py(self, REAL_t[:, ::1] simplex1, REAL_t[:, ::1] simplex2)
- volume_Node(self, REAL_t[::1] node1, REAL_t[:, ::1] simplex2)
- volume_Node_Mesh(self, REAL_t[::1] node1, meshBase mesh)
- class PyNucleus_nl.interactionDomains.linearTransformInteraction(function horizonFun, interactionDomain baseInteraction, matrixFunction transform)
Bases:
interactionDomain
- A
A: ‘REAL_t[:, ::1]’
- __init__(*args, **kwargs)
- get_Surface(self, REAL_t[::1] node1)
- class PyNucleus_nl.interactionDomains.retriangulationDomain(function horizonFun, BOOL_t isComplement, BOOL_t symmetric)
Bases:
interactionDomain
- __init__(*args, **kwargs)
PyNucleus_nl.kernels module
- PyNucleus_nl.kernels.getFractionalKernel(dim, s, horizon=None, interaction=None, scaling=None, normalized=True, piecewise=True, phi=None, boundary=False, derivative=0, tempered=0.0, max_horizon=nan, manifold=False)[source]
PyNucleus_nl.kernelsCy module
- class PyNucleus_nl.kernelsCy.ComplexKernel(INDEX_t dim, kernelType kType, function horizon, interactionDomain interaction, twoPointFunction scaling, twoPointFunction phi, BOOL_t piecewise=True, BOOL_t boundary=False, INDEX_t valueSize=1, REAL_t max_horizon=np.nan, **kwargs)
Bases:
ComplextwoPointFunction
A kernel functions that can be used to define a nonlocal operator.
- __call__()
Evaluate the kernel.
- __init__(*args, **kwargs)
- boundary
boundary: ‘BOOL_t’
- complement
complement: ‘BOOL_t’
- dim
dim: ‘INDEX_t’
- evalParams_py(self, REAL_t[::1] x, REAL_t[::1] y)
Evaluate the kernel parameters.
- eval_py(self, REAL_t[::1] x, REAL_t[::1] y, double complex[::1] vec, BOOL_t callEvalParams=True)
Evaluate the kernel.
- finiteHorizon
finiteHorizon: ‘BOOL_t’
- getBoundaryKernel(self)
Get the boundary kernel. This is the kernel that corresponds to the elimination of a subdomain via Gauss theorem.
- getComplementKernel(self)
Get the complement kernel.
- getModifiedKernel(self, function horizon=None, twoPointFunction scaling=None)
- horizon
horizon: PyNucleus_fem.functions.function
- horizonValue
The value of the interaction horizon.
- horizonValue2
- interaction
interaction: PyNucleus_nl.interactionDomains.interactionDomain
- kernelType
kernelType: ‘kernelType’
- max_horizon
max_horizon: ‘REAL_t’
- max_singularity
max_singularity: ‘REAL_t’
- min_singularity
min_singularity: ‘REAL_t’
- phi
phi: PyNucleus_nl.twoPointFunctions.twoPointFunction
- piecewise
piecewise: ‘BOOL_t’
- plot(self, x0=None)
Plot the kernel function.
- scaling
scaling: PyNucleus_nl.twoPointFunctions.twoPointFunction
- scalingPrePhi
scalingPrePhi: PyNucleus_nl.twoPointFunctions.twoPointFunction
- scalingValue
The value of the scaling factor.
- singularityValue
The order of the singularity.
- variable
variable: ‘BOOL_t’
- variableHorizon
variableHorizon: ‘BOOL_t’
- variableScaling
variableScaling: ‘BOOL_t’
- variableSingularity
variableSingularity: ‘BOOL_t’
- class PyNucleus_nl.kernelsCy.FractionalKernel(INDEX_t dim, fractionalOrderBase s, function horizon, interactionDomain interaction, twoPointFunction scaling, twoPointFunction phi=None, BOOL_t piecewise=True, BOOL_t boundary=False, INDEX_t derivative=0, REAL_t tempered=0., REAL_t max_horizon=np.nan, BOOL_t manifold=False)
Bases:
Kernel
A kernel function that can be used to define a fractional operator.
- __init__(*args, **kwargs)
- derivative
derivative: ‘INDEX_t’
- evalParams_py(self, REAL_t[::1] x, REAL_t[::1] y)
- getBoundaryKernel(self)
Get the boundary kernel. This is the kernel that corresponds to the elimination of a subdomain via Gauss theorem.
- getComplementKernel(self)
- getDerivativeKernel(self)
- getHessianKernel(self)
- getModifiedKernel(self, fractionalOrderBase s=None, function horizon=None, twoPointFunction scaling=None)
- manifold
manifold: ‘BOOL_t’
- s
s: PyNucleus_nl.fractionalOrders.fractionalOrderBase
- sValue
The value of the fractional order
- temperedValue
The value of the tempering parameter
- variableOrder
variableOrder: ‘BOOL_t’
- class PyNucleus_nl.kernelsCy.Kernel(INDEX_t dim, kernelType kType, function horizon, interactionDomain interaction, twoPointFunction scaling, twoPointFunction phi, BOOL_t piecewise=True, BOOL_t boundary=False, INDEX_t valueSize=1, REAL_t max_horizon=np.nan, **kwargs)
Bases:
twoPointFunction
A kernel functions that can be used to define a nonlocal operator.
- __call__()
Evaluate the kernel.
- __init__(*args, **kwargs)
- boundary
The order of the boundary.
- complement
complement: ‘BOOL_t’
- dim
dim: ‘INDEX_t’
- evalParams_py(self, REAL_t[::1] x, REAL_t[::1] y)
Evaluate the kernel parameters.
- eval_py(self, REAL_t[::1] x, REAL_t[::1] y, REAL_t[::1] vec, BOOL_t callEvalParams=True)
Evaluate the kernel.
- finiteHorizon
finiteHorizon: ‘BOOL_t’
- getBoundaryKernel(self)
Get the boundary kernel. This is the kernel that corresponds to the elimination of a subdomain via Gauss theorem.
- getComplementKernel(self)
Get the complement kernel.
- getKernelParam(self, str param)
- getKernelParams(self)
- getLongDescription(self)
- getModifiedKernel(self, function horizon=None, twoPointFunction scaling=None)
- getParamPtrAddr(self)
- horizon
horizon: PyNucleus_fem.functions.function
- horizonValue
The value of the interaction horizon.
- horizonValue2
- interaction
interaction: PyNucleus_nl.interactionDomains.interactionDomain
- kernelType
kernelType: ‘kernelType’
- max_horizon
max_horizon: ‘REAL_t’
- max_singularity
max_singularity: ‘REAL_t’
- min_singularity
min_singularity: ‘REAL_t’
- phi
phi: PyNucleus_nl.twoPointFunctions.twoPointFunction
- piecewise
piecewise: ‘BOOL_t’
- plot(self, x0=None)
Plot the kernel function.
- scaling
scaling: PyNucleus_nl.twoPointFunctions.twoPointFunction
- scalingPrePhi
scalingPrePhi: PyNucleus_nl.twoPointFunctions.twoPointFunction
- scalingValue
The value of the scaling factor.
- singularityValue
The order of the singularity.
- variable
variable: ‘BOOL_t’
- variableHorizon
variableHorizon: ‘BOOL_t’
- variableScaling
variableScaling: ‘BOOL_t’
- variableSingularity
variableSingularity: ‘BOOL_t’
- class PyNucleus_nl.kernelsCy.RangedFractionalKernel(INDEX_t dim, admissibleOrders, function horizon, BOOL_t normalized=True, REAL_t tempered=0., REAL_t errorBound=-1., INDEX_t M_min=1, INDEX_t M_max=20, REAL_t xi=0.)
Bases:
FractionalKernel
- M_max
M_max: ‘INDEX_t’
- M_min
M_min: ‘INDEX_t’
- __init__(*args, **kwargs)
- admissibleOrders
admissibleOrders: object
- errorBound
errorBound: ‘REAL_t’
- getFrozenKernel(self, REAL_t s)
- normalized
normalized: ‘BOOL_t’
- setOrder(self, REAL_t s)
- tempered
tempered: ‘REAL_t’
- xi
xi: ‘REAL_t’
- class PyNucleus_nl.kernelsCy.RangedVariableFractionalKernel(INDEX_t dim, function blockIndicator, admissibleOrders, function horizon, BOOL_t normalized=True, REAL_t errorBound=-1., INDEX_t M_min=1, INDEX_t M_max=20, REAL_t xi=0.)
Bases:
FractionalKernel
- M_max
M_max: ‘INDEX_t’
- M_min
M_min: ‘INDEX_t’
- __init__(*args, **kwargs)
- admissibleOrders
admissibleOrders: object
- blockIndicator
blockIndicator: PyNucleus_fem.functions.function
- errorBound
errorBound: ‘REAL_t’
- getFrozenKernel(self, REAL_t[:, ::1] sVals)
- normalized
normalized: ‘BOOL_t’
- setOrder(self, REAL_t[:, ::1] sVals)
- xi
xi: ‘REAL_t’
- PyNucleus_nl.kernelsCy.getKernelEnum(str kernelTypeString)
PyNucleus_nl.nonlocalOperator module
- class PyNucleus_nl.nonlocalOperator.Complexdouble_local_matrix_t(INDEX_t dim, INDEX_t manifold_dim1, INDEX_t manifold_dim2, DoFMap dm)
Bases:
object
- DoFMap
DoFMap: PyNucleus_fem.DoFMaps.DoFMap
- __call__(*args, **kwargs)
Call self as a function.
- __init__(*args, **kwargs)
- addQuadRule_py(self, panelType panel)
- cellNo1
cellNo1: ‘INDEX_t’
- cellNo2
cellNo2: ‘INDEX_t’
- computeCellPairIdentifier_py(self)
- distantQuadRules
distantQuadRules: dict
- eval_py(self, double complex[:, ::1] contrib, panel)
- getPanelType(self) panelType
- perm
perm: ‘INDEX_t[::1]’
- perm1
perm1: ‘INDEX_t[::1]’
- perm2
perm2: ‘INDEX_t[::1]’
- precomputedDoFPermutations
precomputedDoFPermutations: ‘INDEX_t[:, ::1]’
- precomputedSurfaceSimplexPermutations
precomputedSurfaceSimplexPermutations: ‘INDEX_t[:, ::1]’
- precomputedVolumeSimplexPermutations
precomputedVolumeSimplexPermutations: ‘INDEX_t[:, ::1]’
- setCell1_py(self, INDEX_t cellNo1)
- setCell2_py(self, INDEX_t cellNo2)
- setMesh1_py(self, meshBase mesh1)
- setMesh2_py(self, meshBase mesh2)
- setVerticesCells1_py(self, REAL_t[:, ::1] vertices1, INDEX_t[:, ::1] cells1)
- setVerticesCells2_py(self, REAL_t[:, ::1] vertices2, INDEX_t[:, ::1] cells2)
- symmetricCells
symmetricCells: ‘bool’
- symmetricLocalMatrix
symmetricLocalMatrix: ‘bool’
- vol1
vol1: ‘REAL_t’
- vol2
vol2: ‘REAL_t’
- class PyNucleus_nl.nonlocalOperator.ComplexnonlocalOperator(ComplexKernel kernel, meshBase mesh, DoFMap dm, num_dofs=None, INDEX_t manifold_dim2=-1)
Bases:
Complexdouble_local_matrix_t
- H0
H0: ‘REAL_t’
- __init__(*args, **kwargs)
- getPanelType(self) panelType
- hmin
hmin: ‘REAL_t’
- kernel
kernel: PyNucleus_nl.kernelsCy.ComplexKernel
- n
n: ‘REAL_t[::1]’
- num_dofs
num_dofs: ‘REAL_t’
- setKernel(self, ComplexKernel kernel, quad_order_diagonal=None, target_order=None) void
- w
w: ‘REAL_t[::1]’
- class PyNucleus_nl.nonlocalOperator.PermutationIndexer(N)
Bases:
object
- __init__(*args, **kwargs)
- rank_py(self, INDEX_t[::1] perm)
- class PyNucleus_nl.nonlocalOperator.double_local_matrix_t(INDEX_t dim, INDEX_t manifold_dim1, INDEX_t manifold_dim2, DoFMap dm)
Bases:
object
- DoFMap
DoFMap: PyNucleus_fem.DoFMaps.DoFMap
- __call__(*args, **kwargs)
Call self as a function.
- __init__(*args, **kwargs)
- addQuadRule_py(self, panelType panel)
- cellNo1
cellNo1: ‘INDEX_t’
- cellNo2
cellNo2: ‘INDEX_t’
- computeCellPairIdentifier_py(self)
- distantQuadRules
distantQuadRules: dict
- eval_py(self, REAL_t[:, ::1] contrib, panel)
- getPanelType(self) panelType
- perm
perm: ‘INDEX_t[::1]’
- perm1
perm1: ‘INDEX_t[::1]’
- perm2
perm2: ‘INDEX_t[::1]’
- precomputedDoFPermutations
precomputedDoFPermutations: ‘INDEX_t[:, ::1]’
- precomputedSurfaceSimplexPermutations
precomputedSurfaceSimplexPermutations: ‘INDEX_t[:, ::1]’
- precomputedVolumeSimplexPermutations
precomputedVolumeSimplexPermutations: ‘INDEX_t[:, ::1]’
- setCell1_py(self, INDEX_t cellNo1)
- setCell2_py(self, INDEX_t cellNo2)
- setMesh1_py(self, meshBase mesh1)
- setMesh2_py(self, meshBase mesh2)
- setVerticesCells1_py(self, REAL_t[:, ::1] vertices1, INDEX_t[:, ::1] cells1)
- setVerticesCells2_py(self, REAL_t[:, ::1] vertices2, INDEX_t[:, ::1] cells2)
- symmetricCells
symmetricCells: ‘bool’
- symmetricLocalMatrix
symmetricLocalMatrix: ‘bool’
- vol1
vol1: ‘REAL_t’
- vol2
vol2: ‘REAL_t’
- class PyNucleus_nl.nonlocalOperator.nonlocalLaplacian1D(Kernel kernel, meshBase mesh, DoFMap dm, num_dofs=None, manifold_dim2=-1, **kwargs)
Bases:
nonlocalOperator
- __init__(*args, **kwargs)
- quad_order_diagonal
quad_order_diagonal: ‘REAL_t’
- target_order
target_order: ‘REAL_t’
- class PyNucleus_nl.nonlocalOperator.nonlocalLaplacian2D(Kernel kernel, meshBase mesh, DoFMap dm, num_dofs=None, manifold_dim2=-1, **kwargs)
Bases:
nonlocalOperator
- __init__(*args, **kwargs)
- quad_order_diagonal
quad_order_diagonal: ‘REAL_t’
- quad_order_diagonalV
quad_order_diagonalV: ‘REAL_t’
- target_order
target_order: ‘REAL_t’
- class PyNucleus_nl.nonlocalOperator.nonlocalOperator(Kernel kernel, meshBase mesh, DoFMap dm, num_dofs=None, INDEX_t manifold_dim2=-1)
Bases:
double_local_matrix_t
- H0
H0: ‘REAL_t’
- __init__(*args, **kwargs)
- getPanelType(self) panelType
- hmin
hmin: ‘REAL_t’
- kernel
kernel: PyNucleus_nl.kernelsCy.Kernel
- n
n: ‘REAL_t[::1]’
- num_dofs
num_dofs: ‘REAL_t’
- setKernel(self, Kernel kernel, quad_order_diagonal=None, target_order=None) void
- w
w: ‘REAL_t[::1]’
- class PyNucleus_nl.nonlocalOperator.specialQuadRule(quadratureRule qr, REAL_t[:, ::1] PSI=None, REAL_t[:, :, ::1] PSI3=None, REAL_t[:, ::1] PHI=None, REAL_t[:, :, ::1] PHI3=None)
Bases:
object
- PHI
PHI: ‘REAL_t[:, ::1]’
- PHI3
PHI3: ‘REAL_t[:, :, ::1]’
- PSI
PSI: ‘REAL_t[:, ::1]’
- PSI3
PSI3: ‘REAL_t[:, :, ::1]’
- __init__(*args, **kwargs)
- qr
qr: PyNucleus_fem.quadrature.quadratureRule
- qrTransformed0
qrTransformed0: PyNucleus_fem.quadrature.transformQuadratureRule
- qrTransformed1
qrTransformed1: PyNucleus_fem.quadrature.transformQuadratureRule
PyNucleus_nl.nonlocalBuilder module
nonlocalBuilder(DoFMap dm, Kernel kernel, dict params={}, bool zeroExterior=True, Comm comm=None, FakePLogger PLogger=None, DoFMap dm2=None, **kwargs)
- PyNucleus_nl.nonlocalBuilder.__init__(self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.
PyNucleus_nl.nonlocalProblems module
- class PyNucleus_nl.nonlocalProblems.nonlocalMeshFactoryClass[source]
Bases:
factory
- PyNucleus_nl.nonlocalProblems.boxIndicators(ax=-1.0, ay=-1.0, az=-1.0, bx=1.0, by=1.0, bz=1.0, **kwargs)[source]
- class PyNucleus_nl.nonlocalProblems.nonlocalBaseProblem(driver)[source]
Bases:
problem
- class PyNucleus_nl.nonlocalProblems.fractionalLaplacianProblem(driver, useMulti=False)[source]
Bases:
nonlocalBaseProblem
- class PyNucleus_nl.nonlocalProblems.nonlocalPoissonProblem(driver)[source]
Bases:
nonlocalBaseProblem
- class PyNucleus_nl.nonlocalProblems.transientFractionalProblem(driver, useMulti=False)[source]
Bases:
fractionalLaplacianProblem
- class PyNucleus_nl.nonlocalProblems.brusselatorProblem(driver)[source]
Bases:
problem
Fractional order Brusselator system:
partial_t U = -(-Delta)^alpha U + (B-1)*U + Q^2 V + B/Q * U**2 + 2*Q*U*V + U**2 * V
eta**2 * partial_t V = -(-Delta)^beta U - B*U - Q^2 V - B/Q * U**2 - 2*Q*U*V - U**2 * V
with zero flux conditions on U and V.
s = beta/alpha eta = sqrt(D_X**s / D_Y) Q = A eta