Note
Go to the end to download the full example code.
Dirichlet condition for infinite horizon kernel
The following example can be found at examples/example_InfHorizonDirichlet.py in the PyNucleus repository.
We want to solve a problem with infinite horizon fractional kernel
where \(c\) is the usual normalization constant, and imposes an inhomogeneous Dirichlet volume condition. We will have to make some assumption on the volume condition in order to make it computationally tractable. Here we assume that it is zero at some distance away from the domain.
where \(f\equiv 1\) and \(g\) is chosen to match the known exact solution \(u(x)=C(1-|x|^2)_+^s\) with some constant \(C\).
import numpy as np
import matplotlib.pyplot as plt
from PyNucleus import meshFactory, dofmapFactory, kernelFactory, functionFactory, solverFactory
Construct a mesh for \(\Omega\cup \Omega_\mathcal{I}\) and set up degree of freedom maps on \(\Omega\) and \(\Omega_\mathcal{I}\).
radius = 1.0
mesh = meshFactory('disc', n=8, radius=radius)
for _ in range(4):
mesh = mesh.refine()
Get an indicator function for \(\Omega\). Subtract 1e-6 to avoid roundoff errors for nodes that are exactly on \(|x| = 0.5\).
OmegaIndicator = functionFactory('radialIndicator', 0.5*radius-1e-6)
dm = dofmapFactory('P1', mesh, OmegaIndicator)
dmBC = dm.getComplementDoFMap()
plt.figure()
dm.plot(printDoFIndices=False)
plt.figure()
dmBC.plot(printDoFIndices=False)
Set up the kernel, rhs and known solution.
s = 0.75
kernel = kernelFactory('fractional', dim=mesh.dim, s=s, horizon=np.inf)
rhs = functionFactory('constant', 1.)
uex = functionFactory('solFractional', dim=mesh.dim, s=s, radius=radius)
Assemble the linear system
Set up a solver for \(A_{\Omega,\Omega}\).
A_OmegaOmega = dm.assembleNonlocal(kernel, matrixFormat='H2')
A_OmegaOmegaI = dm.assembleNonlocal(kernel, dm2=dmBC)
f = dm.assembleRHS(rhs)
g = g = dmBC.interpolate(uex)
solver = solverFactory('lu', A=A_OmegaOmega, setup=True)
Efficiency of assembly with 2 DoFMaps is bad.
Compute FE solution and error between FE solution and interpolation of analytic expression
u_Omega = dm.zeros()
solver(f-A_OmegaOmegaI*g, u_Omega)
u = u_Omega.augmentWithBoundaryData(g)
err = u.dm.interpolate(uex) - u
Plot FE solution and error
plt.figure()
plt.title('FE solution')
u.plot(flat=True)
plt.figure()
plt.title('error')
err.plot(flat=True)
<matplotlib.collections.PolyCollection object at 0x7f34a0d06e10>
Total running time of the script: (0 minutes 8.702 seconds)