| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 5, 14, 103, 51, 31, 52, 10 | , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 6, 103, 108, 14, 31, 10 | , ⊢ |
| : , : , : , : , : |
4 | instantiation | 7, 8, 14, 9, 10, 11* | , ⊢ |
| : , : , : |
5 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_absorption |
6 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
7 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_factorization |
8 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
9 | instantiation | 57 | ⊢ |
| : , : , : |
10 | instantiation | 20, 12, 22 | , ⊢ |
| : , : , : |
11 | instantiation | 13, 14, 15 | , ⊢ |
| : , : |
12 | instantiation | 16, 59, 60, 27, 28 | , ⊢ |
| : , : , : , : |
13 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
14 | instantiation | 17, 18, 19 | ⊢ |
| : , : |
15 | instantiation | 20, 21, 22 | , ⊢ |
| : , : , : |
16 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
17 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
18 | instantiation | 106, 77, 23 | ⊢ |
| : , : , : |
19 | instantiation | 39, 24, 25 | ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
21 | instantiation | 26, 59, 60, 27, 28 | , ⊢ |
| : , : , : , : |
22 | instantiation | 29, 30, 31 | ⊢ |
| : , : , : |
23 | instantiation | 106, 82, 32 | ⊢ |
| : , : , : |
24 | instantiation | 64, 42, 33 | ⊢ |
| : , : |
25 | instantiation | 34, 35, 36 | ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
27 | instantiation | 58, 59, 60, 37 | ⊢ |
| : , : , : |
28 | instantiation | 38, 105, 91 | ⊢ |
| : , : |
29 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
31 | instantiation | 67 | ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
33 | instantiation | 39, 40, 41 | ⊢ |
| : , : , : |
34 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
35 | instantiation | 50, 108, 43, 51, 45, 52, 42, 65, 66, 54 | ⊢ |
| : , : , : , : , : , : |
36 | instantiation | 50, 51, 103, 43, 52, 44, 45, 55, 56, 65, 66, 54 | ⊢ |
| : , : , : , : , : , : |
37 | instantiation | 46, 59, 60, 47, 48 | ⊢ |
| : , : , : , : , : |
38 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
39 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
40 | instantiation | 64, 49, 54 | ⊢ |
| : , : |
41 | instantiation | 50, 51, 103, 108, 52, 53, 65, 66, 54 | ⊢ |
| : , : , : , : , : , : |
42 | instantiation | 64, 55, 56 | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
44 | instantiation | 67 | ⊢ |
| : , : |
45 | instantiation | 57 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
47 | instantiation | 58, 59, 60, 61 | ⊢ |
| : , : , : |
48 | instantiation | 62, 85, 63 | ⊢ |
| : , : , : |
49 | instantiation | 64, 65, 66 | ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
51 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
52 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
53 | instantiation | 67 | ⊢ |
| : , : |
54 | instantiation | 106, 77, 68 | ⊢ |
| : , : , : |
55 | instantiation | 106, 77, 69 | ⊢ |
| : , : , : |
56 | instantiation | 106, 77, 70 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
58 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
59 | instantiation | 71, 85 | ⊢ |
| : |
60 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
61 | instantiation | 72, 105, 73 | ⊢ |
| : , : |
62 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
63 | instantiation | 74, 75, 76 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
66 | instantiation | 106, 77, 78 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
68 | instantiation | 106, 80, 79 | ⊢ |
| : , : , : |
69 | instantiation | 106, 80, 81 | ⊢ |
| : , : , : |
70 | instantiation | 106, 82, 83 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
72 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
73 | assumption | | ⊢ |
74 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
75 | instantiation | 84, 85 | ⊢ |
| : |
76 | instantiation | 86, 105 | ⊢ |
| : |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
78 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
79 | instantiation | 106, 88, 87 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
81 | instantiation | 106, 88, 99 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
84 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
85 | instantiation | 89, 103, 100 | ⊢ |
| : , : |
86 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
87 | instantiation | 106, 90, 91 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
89 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
90 | instantiation | 92, 93, 94 | ⊢ |
| : , : |
91 | assumption | | ⊢ |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
94 | instantiation | 95, 96, 97 | ⊢ |
| : , : |
95 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
96 | instantiation | 98, 99, 100 | ⊢ |
| : , : |
97 | instantiation | 101, 102 | ⊢ |
| : |
98 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
99 | instantiation | 106, 107, 103 | ⊢ |
| : , : , : |
100 | instantiation | 106, 104, 105 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
102 | instantiation | 106, 107, 108 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
105 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
106 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
108 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |