| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , ⊢ |
| : , : |
1 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
2 | instantiation | 4, 5, 6 | ⊢ |
| : , : |
3 | instantiation | 7, 8, 9 | , ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
5 | instantiation | 93, 64, 10 | ⊢ |
| : , : , : |
6 | instantiation | 26, 11, 12 | ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
8 | instantiation | 13, 46, 47, 14, 15 | , ⊢ |
| : , : , : , : |
9 | instantiation | 16, 17, 18 | ⊢ |
| : , : , : |
10 | instantiation | 93, 69, 19 | ⊢ |
| : , : , : |
11 | instantiation | 51, 29, 20 | ⊢ |
| : , : |
12 | instantiation | 21, 22, 23 | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
14 | instantiation | 45, 46, 47, 24 | ⊢ |
| : , : , : |
15 | instantiation | 25, 92, 78 | ⊢ |
| : , : |
16 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
17 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
18 | instantiation | 54 | ⊢ |
| : , : |
19 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
20 | instantiation | 26, 27, 28 | ⊢ |
| : , : , : |
21 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
22 | instantiation | 37, 95, 30, 38, 32, 39, 29, 52, 53, 41 | ⊢ |
| : , : , : , : , : , : |
23 | instantiation | 37, 38, 90, 30, 39, 31, 32, 42, 43, 52, 53, 41 | ⊢ |
| : , : , : , : , : , : |
24 | instantiation | 33, 46, 47, 34, 35 | ⊢ |
| : , : , : , : , : |
25 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
26 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
27 | instantiation | 51, 36, 41 | ⊢ |
| : , : |
28 | instantiation | 37, 38, 90, 95, 39, 40, 52, 53, 41 | ⊢ |
| : , : , : , : , : , : |
29 | instantiation | 51, 42, 43 | ⊢ |
| : , : |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
31 | instantiation | 54 | ⊢ |
| : , : |
32 | instantiation | 44 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
34 | instantiation | 45, 46, 47, 48 | ⊢ |
| : , : , : |
35 | instantiation | 49, 72, 50 | ⊢ |
| : , : , : |
36 | instantiation | 51, 52, 53 | ⊢ |
| : , : |
37 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
38 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
39 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
40 | instantiation | 54 | ⊢ |
| : , : |
41 | instantiation | 93, 64, 55 | ⊢ |
| : , : , : |
42 | instantiation | 93, 64, 56 | ⊢ |
| : , : , : |
43 | instantiation | 93, 64, 57 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
45 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
46 | instantiation | 58, 72 | ⊢ |
| : |
47 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
48 | instantiation | 59, 92, 60 | ⊢ |
| : , : |
49 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
50 | instantiation | 61, 62, 63 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
53 | instantiation | 93, 64, 65 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
55 | instantiation | 93, 67, 66 | ⊢ |
| : , : , : |
56 | instantiation | 93, 67, 68 | ⊢ |
| : , : , : |
57 | instantiation | 93, 69, 70 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
59 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
60 | assumption | | ⊢ |
61 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
62 | instantiation | 71, 72 | ⊢ |
| : |
63 | instantiation | 73, 92 | ⊢ |
| : |
64 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
65 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
66 | instantiation | 93, 75, 74 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
68 | instantiation | 93, 75, 86 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
70 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
71 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
72 | instantiation | 76, 90, 87 | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
74 | instantiation | 93, 77, 78 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
76 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
77 | instantiation | 79, 80, 81 | ⊢ |
| : , : |
78 | assumption | | ⊢ |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
81 | instantiation | 82, 83, 84 | ⊢ |
| : , : |
82 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
83 | instantiation | 85, 86, 87 | ⊢ |
| : , : |
84 | instantiation | 88, 89 | ⊢ |
| : |
85 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
86 | instantiation | 93, 94, 90 | ⊢ |
| : , : , : |
87 | instantiation | 93, 91, 92 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
89 | instantiation | 93, 94, 95 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
92 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
93 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
95 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |