logo

Expression of type InClass

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, m
from proveit.logic import InClass
from proveit.physics.quantum import NumBra, NumKet, Qmult, QmultCodomain
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _t
In [2]:
# build up the expression from sub-expressions
expr = InClass(Qmult(NumBra(m, _t), InverseFourierTransform(_t), NumKet(k, _t)), QmultCodomain)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left({_{t}}\langle m \rvert \thinspace {\mathrm {FT}}^{\dag}_{t} \thinspace \lvert k \rangle_{t}\right) \underset{{\scriptscriptstyle c}}{\in} \mathcal{Q^*}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operands: 6
4Literal
5Literal
6ExprTuple7, 8, 9
7Operationoperator: 10
operands: 11
8Operationoperator: 12
operand: 18
9Operationoperator: 14
operands: 15
10Literal
11ExprTuple16, 18
12Literal
13ExprTuple18
14Literal
15ExprTuple17, 18
16Variable
17Variable
18Literal