logo
In [1]:
import proveit
from proveit import x, A, B
from proveit.numbers import zero, Integer, Natural
from proveit.numbers.number_sets.natural_numbers  import zero_in_nats
from proveit.numbers.number_sets.integers import nat_within_int
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving zero_is_int
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
zero_is_int:
(see dependencies)
zero_is_int has been proven.  Now simply execute "%qed".
In [3]:
zero_in_nats
In [4]:
nat_within_int
In [5]:
%qed
proveit.numbers.number_sets.integers.zero_is_int has been proven.