| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6 | , ⊢ |
| : , : , : , : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
2 | reference | 93 | ⊢ |
3 | reference | 98 | ⊢ |
4 | instantiation | 7, 8, 9 | ⊢ |
| : , : |
5 | reference | 21 | ⊢ |
6 | instantiation | 10, 11, 12 | , ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
8 | instantiation | 96, 67, 13 | ⊢ |
| : , : , : |
9 | instantiation | 29, 14, 15 | ⊢ |
| : , : , : |
10 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
11 | instantiation | 16, 49, 50, 17, 18 | , ⊢ |
| : , : , : , : |
12 | instantiation | 19, 20, 21 | ⊢ |
| : , : , : |
13 | instantiation | 96, 72, 22 | ⊢ |
| : , : , : |
14 | instantiation | 54, 32, 23 | ⊢ |
| : , : |
15 | instantiation | 24, 25, 26 | ⊢ |
| : , : , : |
16 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
17 | instantiation | 48, 49, 50, 27 | ⊢ |
| : , : , : |
18 | instantiation | 28, 95, 81 | ⊢ |
| : , : |
19 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
21 | instantiation | 57 | ⊢ |
| : , : |
22 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
23 | instantiation | 29, 30, 31 | ⊢ |
| : , : , : |
24 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
25 | instantiation | 40, 98, 33, 41, 35, 42, 32, 55, 56, 44 | ⊢ |
| : , : , : , : , : , : |
26 | instantiation | 40, 41, 93, 33, 42, 34, 35, 45, 46, 55, 56, 44 | ⊢ |
| : , : , : , : , : , : |
27 | instantiation | 36, 49, 50, 37, 38 | ⊢ |
| : , : , : , : , : |
28 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
29 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
30 | instantiation | 54, 39, 44 | ⊢ |
| : , : |
31 | instantiation | 40, 41, 93, 98, 42, 43, 55, 56, 44 | ⊢ |
| : , : , : , : , : , : |
32 | instantiation | 54, 45, 46 | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
34 | instantiation | 57 | ⊢ |
| : , : |
35 | instantiation | 47 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
37 | instantiation | 48, 49, 50, 51 | ⊢ |
| : , : , : |
38 | instantiation | 52, 75, 53 | ⊢ |
| : , : , : |
39 | instantiation | 54, 55, 56 | ⊢ |
| : , : |
40 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
41 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
42 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
43 | instantiation | 57 | ⊢ |
| : , : |
44 | instantiation | 96, 67, 58 | ⊢ |
| : , : , : |
45 | instantiation | 96, 67, 59 | ⊢ |
| : , : , : |
46 | instantiation | 96, 67, 60 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
48 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
49 | instantiation | 61, 75 | ⊢ |
| : |
50 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
51 | instantiation | 62, 95, 63 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
53 | instantiation | 64, 65, 66 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
56 | instantiation | 96, 67, 68 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
58 | instantiation | 96, 70, 69 | ⊢ |
| : , : , : |
59 | instantiation | 96, 70, 71 | ⊢ |
| : , : , : |
60 | instantiation | 96, 72, 73 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
62 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
63 | assumption | | ⊢ |
64 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
65 | instantiation | 74, 75 | ⊢ |
| : |
66 | instantiation | 76, 95 | ⊢ |
| : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
68 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
69 | instantiation | 96, 78, 77 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
71 | instantiation | 96, 78, 89 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
73 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
74 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
75 | instantiation | 79, 93, 90 | ⊢ |
| : , : |
76 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
77 | instantiation | 96, 80, 81 | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
79 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
80 | instantiation | 82, 83, 84 | ⊢ |
| : , : |
81 | assumption | | ⊢ |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
84 | instantiation | 85, 86, 87 | ⊢ |
| : , : |
85 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
86 | instantiation | 88, 89, 90 | ⊢ |
| : , : |
87 | instantiation | 91, 92 | ⊢ |
| : |
88 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
89 | instantiation | 96, 97, 93 | ⊢ |
| : , : , : |
90 | instantiation | 96, 94, 95 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
92 | instantiation | 96, 97, 98 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
95 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
96 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |