logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4  ⊢  
  : , : , :
1reference8  ⊢  
2reference9  ⊢  
3reference10  ⊢  
4instantiation5, 9, 10, 6, 7  ⊢  
  : , : , : , : , :
5theorem  ⊢  
 proveit.physics.quantum.algebra.qmult_op_op_is_op
6instantiation8, 9, 10, 11  ⊢  
  : , : , :
7instantiation12, 21, 13  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.physics.quantum.algebra.qmult_op_is_linmap
9instantiation14, 21  ⊢  
  :
10theorem  ⊢  
 proveit.linear_algebra.inner_products.complex_set_is_hilbert_space
11instantiation15, 28, 16  ⊢  
  : , :
12theorem  ⊢  
 proveit.physics.quantum.algebra.qmult_matrix_is_linmap
13instantiation17, 18, 19  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space
15theorem  ⊢  
 proveit.physics.quantum.algebra.num_bra_is_lin_map
16assumption  ⊢  
17theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
18instantiation20, 21  ⊢  
  :
19instantiation22, 28  ⊢  
  :
20theorem  ⊢  
 proveit.linear_algebra.matrices.unitaries_are_matrices
21instantiation23, 24, 25  ⊢  
  : , :
22theorem  ⊢  
 proveit.physics.quantum.QFT.invFT_is_unitary
23theorem  ⊢  
 proveit.numbers.exponentiation.exp_natpos_closure
24theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
25instantiation26, 27, 28  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
27theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat
28axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos